如图,已知抛物线y=ax
2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,-3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P与A、C不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,直接写出点P的坐标;
(3)求线段PD的最大值,并求最大值时P点的坐标;
(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
查看答案
如图所示,△ABC内接于圆O,AB是直径,过A作射线AM,若∠MAC=∠ABC.
(1)求证:AM是圆O的切线;
(2)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.若AE=2,圆O的半径为5,求cos∠AFE;
(3)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.连接BD交AC于G,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.
查看答案