满分5 > 初中数学试题 >

如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD...

如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有   
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是manfen5.com 满分网
④四边形AnBnCnDn的面积是manfen5.com 满分网
manfen5.com 满分网
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断: ①根据矩形的判定与性质作出判断; ②根据菱形的判定与性质作出判断; ③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长; ④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积. 【解析】 ①连接A1C1,B1D1. ∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1, ∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC; ∴A1D1∥B1C1,A1B1∥C1D1, ∴四边形A1B1C1D1是平行四边形; ∵AC丄BD,∴四边形A1B1C1D1是矩形, ∴B1D1=A1C1(矩形的两条对角线相等); ∴A2D2=C2D2=C2B2=B2A2(中位线定理), ∴四边形A2B2C2D2是菱形;  故本选项错误; ②由①知,四边形A2B2C2D2是菱形;  ∴根据中位线定理知,四边形A4B4C4D4是菱形; 故本选项正确; ③根据中位线的性质易知,A5B5=A3B3=A1B1=AC,B5C5=B3C3=B1C1=BD, ∴四边形A5B5C5D5的周长是2×(a+b)=, 故本选项正确; ④∵四边形ABCD中,AC=a,BD=b,且AC丄BD, ∴S四边形ABCD=ab÷2; 由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半, 四边形AnBnCnDn的面积是, 故本选项正确; 综上所述,②③④正确. 故答案为:②③④
复制答案
考点分析:
相关试题推荐
在反比例函数y=manfen5.com 满分网(x>0)的图象上,有一系列点A1、A2、A3、…、An、An+1,若A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、An、An+1作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1=    ,S1+S2+S3+…+Sn=    .(用n的代数式表示).
manfen5.com 满分网 查看答案
如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是   
manfen5.com 满分网 查看答案
用一个圆心角为120°,半径为4cm的扇形围成一个圆锥的侧面,则这个圆锥的底面积为    cm2查看答案
如果不等式组manfen5.com 满分网的解集是0≤x<1,那么a+b的值为    查看答案
将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.