满分5 > 初中数学试题 >

已知反比例函数y=,则下列各点一定不在反比例函数y=图象上的是( ) A.(-3...

已知反比例函数y=manfen5.com 满分网,则下列各点一定不在反比例函数y=manfen5.com 满分网图象上的是( )
A.(-3,-2)
B.(2,3)
C.(manfen5.com 满分网manfen5.com 满分网
D.(-1,-6)
要知道,对于y=来说,k=xy,而对反比例函数y=来说,xy=6,从各选项中找到积为6的点即可. 【解析】 A、∵-3×(-2)=6,∴该点在函数图象上,故本选项错误; B、∵2×3=6,∴该点在函数图象上,故本选项错误; C、∵×=≠6,∴该点不在函数图象上,故本选项正确; D、∵-1×(-6)=6,∴该点在函数图象上,故本选项错误; 故选C.
复制答案
考点分析:
相关试题推荐
从正面观察下图的两个物体,看到的是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是manfen5.com 满分网上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若manfen5.com 满分网=4manfen5.com 满分网,求△ABC的周长.

manfen5.com 满分网 查看答案
在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为manfen5.com 满分网个单位长度.
(1)如图甲,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
①求k的值;
②若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标.
(2)若k=manfen5.com 满分网,直线y=kx+b将圆周分成两段弧长之比为1:2,求b的值.(图乙供选用)
manfen5.com 满分网
查看答案
如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是______
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连接PG,当PG∥AB时,请直接写出t的值.

manfen5.com 满分网 查看答案
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.