在三角形ABC中,∠C=90°,∠A,∠B,∠C对应的边分别是a,b,c,其中a-b=2
,CD⊥AB于D,BD-AD=2
,求△ABC三边的长.
考点分析:
相关试题推荐
如图1:等边△ADE可以看作由等边△ABC绕顶点A经过旋转相似变换得到.但是我们注意到图形中的△ABD和△ACE的关系,上述变换也可以理解为图形是由△ABD绕顶点A旋转60°形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转60°形成的.
①利用上述结论解决问题:如图2,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等边三角形,求四边形ADFE的面积;
②图3中,△ABC∽△ADE,AB=AC,∠BAC=∠DAE=θ,仿照上述结论,推广出符合图3的结论.(写出结论即可)
查看答案
已知A、B两地相距45千米,骑车人与客车分别从A、B两地出发,往返于A、B两地之间.如图中,折线表示某骑车人离开A地的距离y与时间x的函数关系.客车8点从B地出发,以45千米/时的速度匀速行驶.(乘客上、下车停车时间忽略不计)
①在阅读如图的基础上,直接回答:骑车人共休息几次?骑车人总共骑行多少千米?骑车人与客车总共相遇几次?
②试问:骑车人何时与客车第二次相遇?(要求写出演算过程).
查看答案
如图,是一个挂在墙壁上时钟的示意图.O是其秒针的转动中心,M是秒针的另一端,OM=8cm,l是过点O的铅直直线.现有一只蚂蚁P在秒针OM上爬行,蚂蚁P到点O的距离与M到l的距离始终相等.则1分钟的时间内,蚂蚁P被秒针OM携带的过程中移动的路程(非蚂蚁在秒针上爬行的路程)是
cm.
查看答案
设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),则方程3x-2[x]+4=0的解为
.
查看答案
有三位学生参加两项不同的竞赛,则每位学生最多参加一项竞赛,每项竞赛只许有两位学生参加的概率为
.
查看答案