满分5 > 初中数学试题 >

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边...

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
manfen5.com 满分网
(1)填空:如图1,AC=______
(1)根据勾股定理可得AC=BD==4;易知△ADC≌△BCD,利用四边形内角和是360°可得∠CDB=∠DCA=30°∵∠CAB=30°∴DC∥AB,∵AD=BC∴四边形ABCD是等腰梯形; (2)图中的三角形分为两类:30°,30°,120°;30°,60°,90度.按此找相似三角形即可; (3)过P作出△FBP的高.△FBP面积应等于FB×PK÷2,易得FB=AB-AF=8-k;则KB等于FB的一半,利用30°的正切值可求得FK的值.注意用t表示的线段应大于0. 【解析】 (1)4,4,等腰; (2)共有9对相似三角形. ①△DCE、△ABE与△ACD或△BDC两两相似, 分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对) ②△ABD∽△EAD,△ABD∽△EBC;(有2对) ③△BAC∽△EAD,△BAC∽△EBC;(有2对) 所以,一共有9对相似三角形. (3)由题意知,FP∥AE, ∴∠1=∠PFB, 又∵∠1=∠2=30°, ∴∠PFB=∠2=30°, ∴FP=BP 过点P作PK⊥FB于点K,则FK=BK=FB. ∵AF=t,AB=8, ∴FB=8-t,BK=(8-t). 在Rt△BPK中,PK=BK•tan∠2=(8-t)tan30°=(8-t). ∴△FBP的面积S=•FB•PK=(8-t)•(8-t), ∴S与t之间的函数关系式为: S=(8-t)2,或S=t2-t+, t的取值范围为:0≤t<8.
复制答案
考点分析:
相关试题推荐
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.
(1)求A、B两种纪念品的进价分别为多少?
(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?
查看答案
除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.
查看答案
(1)已知:如图,AC∥DE,AC=DE,BE=CF,求证:∠B=∠F.
(2)已知:如图,AB是⊙O的直径,AD是弦,∠DBC=∠A.
①求证:BC与⊙O相切;
②若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.
manfen5.com 满分网

manfen5.com 满分网 查看答案
(1)解方程:manfen5.com 满分网
(2)解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.