满分5 > 初中数学试题 >

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连...

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:
①△AED≌△DFB;②S四边形BCDG=manfen5.com 满分网CG2;③若AF=2DF,则BG=6GF.
其中正确的结论( )
manfen5.com 满分网
A.只有①②
B.只有①③
C.只有②③
D.①②③
①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB; ②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积. ③过点F作FP∥AE于P点. 根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF. 【解析】 ①∵ABCD为菱形,∴AB=AD. ∵AB=BD,∴△ABD为等边三角形. ∴∠A=∠BDF=60°. 又∵AE=DF,AD=BD, ∴△AED≌△DFB; ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD, 即∠BGD+∠BCD=180°, ∴点B、C、D、G四点共圆, ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.    ∴∠BGC=∠DGC=60°. 过点C作CM⊥GB于M,CN⊥GD于N. ∴CM=CN, 则△CBM≌△CDN,(HL) ∴S四边形BCDG=S四边形CMGN. S四边形CMGN=2S△CMG, ∵∠CGM=60°, ∴GM=CG,CM=CG, ∴S四边形CMGN=2S△CMG=2××CG×CG=CG2. ③过点F作FP∥AE于P点.                   ∵AF=2FD, ∴FP:AE=DF:DA=1:3, ∵AE=DF,AB=AD, ∴BE=2AE, ∴FP:BE=1:6=FG:BG, 即 BG=6GF. 故选D.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是( )
manfen5.com 满分网
A.6
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
下列命题:
①40°角为内角的两个等腰三角形必相似;
②反比例函数manfen5.com 满分网,当x>-2时,y随x的增大而增大;
③两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.
④若圆的半径为5,AB、CD是两条平行弦,且AB=8,CD=6,则弦AC的长为manfen5.com 满分网或5manfen5.com 满分网
⑤函数y=-(x-3)2+4(-1≤x≤4)的最大值是4,最小值是3.
其中真命题有( )
A.0个
B.1个
C.2个
D.3个
查看答案
在平面直角坐标系中,形如(m,n)的点(其中m、n为整数),称为标准点.点P位于圆心在原点、半径等于5的圆上,则这样的点P有( )个.
A.6
B.8
C.10
D.12
查看答案
当实数x的取值使得manfen5.com 满分网有意义时,函数y=-4x+1中y的取值范围是( )
A.y≥-7
B.y≥9
C.y≤-7
D.y>9
查看答案
割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.试用这个方法解决问题:如图,⊙的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.