满分5 > 初中数学试题 >

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将...

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网
(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标; (Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围; (Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了. 【解析】 (Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD. 设点C的坐标为(0,m)(m>0),则BC=OB-OC=4-m. ∴AC=BC=4-m. 在Rt△AOC中,由勾股定理,AC2=OC2+OA2, 即(4-m)2=m2+22,解得m=. ∴点C的坐标为(0,); (Ⅱ)如图②,折叠后点B落在OA边上的点为B′, ∴△B′CD≌△BCD. ∵OB′=x,OC=y, ∴B'C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2. ∴(4-y)2=y2+x2, 即y=-x2+2. 由点B′在边OA上,有0≤x≤2, ∴解析式y=-x2+2(0≤x≤2)为所求. ∵当0≤x≤2时,y随x的增大而减小, ∴y的取值范围为≤y≤2; (Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC. ∴∠OCB″=∠CB″D. 又∵∠CBD=∠CB″D, ∴∠OCB″=∠CBD, ∵CB″∥BA. ∴Rt△COB″∽Rt△BOA. ∴, ∴OC=2OB″. 在Rt△B″OC中, 设OB″=x(x>0),则OC=2x. 由(Ⅱ)的结论,得2x=-x2+2, 解得x=-8±4. ∵x>0, ∴x=-8+4. ∴点C的坐标为(0,8-16).
复制答案
考点分析:
相关试题推荐
如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.
(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);
(2)求证:BC是过A,D,C三点的圆的切线;
(3)若过A,D,C三点的圆的半径为manfen5.com 满分网,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
“知识改变命运,科技繁荣祖国”.杭州市中小学每年都要举办一届科技运动会.如图为某校2011年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:
manfen5.com 满分网
(1)该校参加航模比赛的总人数是______人,空模所在扇形的圆心角的度数是______°,并把条形统计图补充完整;
(2)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年杭州市中小学参加航模比赛人数共有2485人,请你估算今年参加航模比赛的获奖人数约是多少人?
查看答案
定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{1,-4,1}的函数的图象向下平移2个单位,得到一个新函数图象,求这个新函数图象的解析式;
(2)“特征数”是manfen5.com 满分网的函数图象与x、y轴分别交点C、D,“特征数”是manfen5.com 满分网的函数图象与x轴交于点E,点O是原点,判断△ODC与△OED是否相似,请说明理由.

manfen5.com 满分网 查看答案
已知AB、AC为⊙O的两条弦
(1)用直尺(没有刻度)和圆规作出弧BC的中点D;
(2)连接OD,则OD∥AC吗?若成立,请证明;若不成立,请添加一个适当的条件,使之成立,再证明.

manfen5.com 满分网 查看答案
如果a,b,c是三个任意的整数,那么在manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.