满分5 > 初中数学试题 >

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF...

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
manfen5.com 满分网
(1)由平行线的性质可得∠QPW=∠MNF,∠PQW=NFM,故有△FMN∽△QWP; (2)当△FMN是直角三角形时,△QWP也为直角三角形,当MF⊥FN时,证得△DFM∽△GFN,有DF:FG=DM:GN,得到4-x=2x,求得x此时的值,当MG⊥FN时,点M与点A重合,点N与点G重合,此时x=AD=4; (3)当点F、M、N在同一直线上时,MN最短,设经过的时间为x,AM的长度为(4-x),AN的长度为(6-x),再由△MAN∽△MBF即可求出答案. 【解析】 (1)根据三角形中位线定理得 PQ∥FN,PW∥MN, ∴∠QPW=∠PWF,∠PWF=∠MNF, ∴∠QPW=∠MNF. 同理∠PQW=∠NFM, ∴△FMN∽△QWP; (2)由于△FMN∽△QWP,故当△QWP是直角三角形时,△FMN也为直角三角形. 作FG⊥AB,则四边形FCBG是正方形,有GB=CF=CD-DF=4,GN=GB-BN=4-x,DM=x, ①当MF⊥FN时, ∵∠DFM+∠MFG=∠MFG+∠GFN=90°, ∴∠DFM=∠GFN. ∵∠D=∠FGN=90°, ∴△DFM∽△GFN, ∴DF:FG=DM:GN=2:4=1:2, ∴GN=2DM, ∴4-x=2x, ∴x=; ②当MN⊥FN时,点M与点A重合,点N与点G重合, ∴x=AD=GB=4. ∴当x=4或时,△QWP为直角三角形,当0≤x<,<x<4时,△QWP不为直角三角形. (3)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;  ②当4<x≤6时,MN2=AM2+AN2=(x-4)2+(6-x)2 =2(x-5)2+2 当x=5时,MN2=2,故MN取得最小值, 故当x=5时,线段MN最短,MN=.
复制答案
考点分析:
相关试题推荐
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
某施工队承包了高速公路上300米路段的维护施工任务,施工80米后,接上级指示,在保证质量的前提下,要求加快施工速度,6天完成施工任务.已知加速后每天比加速前多施工15米,问加快施工速度后,施工队每天施工多少米?
解题方案:
设施工提速后每天施工x米,
(Ⅰ)用含x的代数式表示:提速前每天施工______米;
(Ⅱ)根据题意,列出相应方程______
(Ⅲ)解这个方程,得______
(Ⅳ)检验:______
(Ⅴ)答:施工提速后每天施工______米.
查看答案
如图,望远镜调好后,摆放在水平地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=141cm,沿AB方向观测物体的仰角α=33°,望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm,参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65).

manfen5.com 满分网 查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为manfen5.com 满分网
(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.