满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点...

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

manfen5.com 满分网
(1)依题意设直线BC的解析式为y=kx+3,把B点坐标代入解析式求出直线BC的表达式.然后又已知抛物线y=x2+bx+c过点B,C,代入求出解析式. (2)由y=x2-4x+3求出点D,A的坐标.得出三角形OBC是等腰直角三角形求出∠OBC,CB的值.过A点作AE⊥BC于点E,求出BE,CE的值.证明△AEC∽△AFP求出PF可得点P在抛物线的对称轴,求出点P的坐标. (3)本题要靠辅助线的帮助.作点A(1,0)关于y轴的对称点A',则A'(-1,0),求出A'C=AC,由勾股定理可得CD,A'D的值.得出△A'DC是等腰三角形后可推出∠OCA+∠OCD=45度. 【解析】 (1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C, ∴C(0,3). 设直线BC的解析式为y=kx+3. ∵B(3,0)在直线BC上, ∴3k+3=0. 解得k=-1. ∴直线BC的解析式为y=-x+3.(1分) ∵抛物线y=x2+bx+c过点B,C, ∴ 解得, ∴抛物线的解析式为y=x2-4x+3.(2分) (2)由y=x2-4x+3. 可得D(2,-1),A(1,0). ∴OB=3,OC=3,OA=1,AB=2. 可得△OBC是等腰直角三角形, ∴∠OBC=45°,CB=3. 如图1,设抛物线对称轴与x轴交于点F, ∴AF=AB=1. 过点A作AE⊥BC于点E. ∴∠AEB=90度. 可得BE=AE=,CE=2. 在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF, ∴△AEC∽△AFP. ∴,. 解得PF=2.∵点P在抛物线的对称轴上, ∴点P的坐标为(2,2)或(2,-2).(5分) (3)解法一: 如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0). 连接A'C,A'D, 可得A'C=AC=,∠OCA'=∠OCA. 由勾股定理可得CD2=20,A'D2=10. 又∵A'C2=10, ∴A'D2+A'C2=CD2. ∴△A'DC是等腰直角三角形,∠CA'D=90°, ∴∠DCA'=45度. ∴∠OCA'+∠OCD=45度. ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(7分) 解法二: 如图3,连接BD. 同解法一可得CD=,AC=. 在Rt△DBF中,∠DFB=90°,BF=DF=1, ∴DB=. 在△CBD和△COA中,,,. ∴. ∴△CBD∽△COA. ∴∠BCD=∠OCA. ∵∠OCB=45°, ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(9分)
复制答案
考点分析:
相关试题推荐
如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
manfen5.com 满分网
查看答案
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.
某施工队承包了高速公路上300米路段的维护施工任务,施工80米后,接上级指示,在保证质量的前提下,要求加快施工速度,6天完成施工任务.已知加速后每天比加速前多施工15米,问加快施工速度后,施工队每天施工多少米?
解题方案:
设施工提速后每天施工x米,
(Ⅰ)用含x的代数式表示:提速前每天施工______米;
(Ⅱ)根据题意,列出相应方程______
(Ⅲ)解这个方程,得______
(Ⅳ)检验:______
(Ⅴ)答:施工提速后每天施工______米.
查看答案
如图,望远镜调好后,摆放在水平地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=141cm,沿AB方向观测物体的仰角α=33°,望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm,参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65).

manfen5.com 满分网 查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.