如图所示,对称轴为x=3的抛物线y=ax
2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1560万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过9所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于75万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
查看答案
在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.
(1)判断四边形AECD的形状(不证明);
(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明;
(3)若CD=2,求四边形BCFE的面积.
查看答案
如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.
(1)设∠BPC=α,如果sinα是方程5x
2-13x+6=0的根,求cosα的值;
(2)在(1)的条件下,求弦CD的长.
查看答案
学校为了响应国家阳光体育活动,选派部分学生参加足球、乒乓球、篮球、排球队集训.根据参加项目制成如下两幅不完整的统计图(如图1和如图2,要求每位同学只能选择一种自己喜欢的球类,图中用足球、乒乓球、篮球、排球代表喜欢这四种球类某种球类的学生人数)
请你根据图中提供的信息解答下列问题:
(1)参加篮球队的有______人,参加足球队的人数占全部参加人数的______%.
(2)喜欢排球队的人数在扇形统计图中所占的圆心角是多少度?并补全频数分布折线统计图.
(3)若足球队只剩一个集训名额,学生小明和小虎都想参加足球队,决定采用随机摸球的方式确定参加权,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,小明随机地从四个小球中摸出一球然后放回,小虎再随机地摸出一球,若小明摸出的小球标有数字比小虎摸出的小球标有的数字大,则小明参加,否则小虎参加,试分析这种规则对双方是否公平?
查看答案
(1)如图①,已知弧AB,用尺规作图,作出弧AB的圆心P;
(2)如图②,若弧AB半径PA为18,圆心角为120°,半径为2的⊙O,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转多少周?
查看答案