满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米...

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

manfen5.com 满分网
(1)已知了CD=3,根据Q点的速度可以用时间x表示出CQ的长,可根据三角形的面积计算公式得出y1,x的函数关系式; (2)可先求出y2的函数式,然后根据其顶点坐标来确定k的取值.已知了P点走完AC用时8s,因此AC=8k,而AP=kx,CQ=x,那么可根据三角形的面积公式列出关于y2,x的函数关系式,进而可根据顶点坐标求出k的值; (3)EF其实就是y2-y1,也就是三角形PCQ和CDQ的面积差即三角形PDQ的面积.得出EF的函数关系式后,根据自变量的取值以及函数的性质即可求出EF的最大值. 【解析】 (1)∵S△DCQ=•CQ•CD,CD=3,CQ=x, ∴y1=x(0<x<8).图象如图所示; (2)S△PCQ=•CQ•CP,CP=8k-xk,CQ=x, ∴y2=×(8k-kx)•x=-kx2+4kx. ∵抛物线顶点坐标是(4,12), ∴-k•42+4k•4=12. 解得k=. 则点P的速度每秒厘米,AC=12厘米; (3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积). ②由(2)得y2=-x2+6x. ∴EF=-x2+6x-x=-x2+x=-(x2-6x+9)+=-(x-3)2+, ∵二次项系数小于0, ∴在0<x<6范围, 当x=3时,EF=最大.
复制答案
考点分析:
相关试题推荐
如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

manfen5.com 满分网 查看答案
为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某县教研室体育组搞了一个随机调查,调查内容是:“每天锻炼是否超过1小时及锻炼未超过1小时的原因”,他们随机调查了720名学生,所得的数据制成了如下的扇形统计图和频数分布直方图.
manfen5.com 满分网
根据图示,请你回答以下问题:
(1)“没时间”的人数是______,并补全频数分布直方图;
(2)2009年某市中小学生约32万人,按此调查,可以估计2009年全市中小学生每天锻炼未超过1小时约有______万人;
(3)如果计划2011年该市中小学生每天锻炼未超过1小时的人数降到3.84 万人,求2009年至2011年锻炼未超过1小时人数的年平均降低的百分率是多少?
查看答案
如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC是格点等腰三角形(三角形的三个顶点都是小正方形的顶点),画出三个以格点P与A、B、C中的任意二点为顶点的三角形,使得该三角形与△ABC全等,并求出点P的坐标.

manfen5.com 满分网 查看答案
暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
查看答案
有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.