如图:在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A和点C,与抛物线y=ax
2+ax+b交于点B,其中点A(0,2),点B(-3,1),抛物线与y轴交点D(0,-2).
(1)求抛物线的解析式;
(2)求点C的坐标;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,抛物线y=-x
2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
查看答案
为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元),年销售量为y万件),年获利为w万元).
(年获利=年销售额-生产成本-节电投资)
(1)直接写出y与x间的函数关系式;
(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?
查看答案
如图,在边长为6的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q,连接BQ.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当△ADQ的面积与正方形ABCD面积之比为1:6时,求BQ的长度,并直接写出此时点P在AB上的位置.
查看答案
重庆大学青年志愿者协会对报名参加2011年重庆大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试.小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)小亮班共有______名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有______人将参加下轮测试;
(2)请将两幅统计图补充完整;
(3)在最后一轮测试中,李江和陈小兰的成绩完全一样,于是采用如下办法选取其中一人:箱中有4个形状、大小和质地等完全相同的小球,分别标有数字1、2、-2、3.从中随机摸出一个小球,然后放回箱中,再随机摸出一个小球.规定:两次摸出的小球的数字之和为4的整数倍,则李江去;否则,陈小兰去.用列表法或树状图求出他们各自去的概率.
查看答案
如图,反比例函数
的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.
(1)求k和b的值;
(2)若一次函数y=ax-3的图象经过点A,求这个一次函数的解析式.
查看答案