满分5 > 初中数学试题 >

已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数) (1...

已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点;
(3)关于x的一元二次方程(m-1)x2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x2+(m-2)x-1向右平移3个单位长度,求平移后的解析式.
(1)根据b2-4ac与零的关系即可判断出的关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数)的解的情况; (2)用十字相乘法来转换y=(m-1)x2+(m-2)x-1,即y=[(m-1)x+1](x-1),则易解; (3)利用(2)的解题结果x=-1,再根据两根之积等于-是整数,得出m的值,进而得出平移后的解析式. 【解析】 (1)根据题意,得 △=(m-2)2-4×(m-1)×(-1)>0,即m2>0 解得,m>0或m<0        ① 又∵m-1≠0, ∴m≠1                ② 由①②,得 m<0,0<m<1或m>1. 证明:(2)由y=(m-1)x2+(m-2)x-1,得 y=[(m-1)x-1](x+1) 抛物线y=[(m-1)x-1](x+1)与x轴的交点就是方程[(m-1)x-1](x+1)=0的两根. 解方程,得, 由(1)得,x=-1,即一元二次方程的一个根是-1, ∴无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点(-1,0). (3)∵x=-1是整数, ∴只需是整数. ∵m是整数,且m≠1,m≠0, ∴m=2, 当m=2时,抛物线的解析式为y=x2-1, 把它的图象向右平移3个单位长度, 则平移后的解析式为y=(x-3)2-1.
复制答案
考点分析:
相关试题推荐
已知某种型号彩电市场售价为2000元/台,某种型号冰箱市场售价为1800元/台,为拉动内需,我区启动“家电下乡”活动,此种型号彩电和冰箱可获得13%的财政补贴.
(1)某商场在启动活动前一个月共售出此两种电器960台,启动活动后的第一个月该型彩电和冰箱的销售量分别比上月增长30%、25%,共计1228台.问启动活动前一个月此两种电器销售各为多少台?
(2)在启动活动前区政府打算用25000元用于为某乡镇福利院购买该型彩电和冰箱,并计划恰好全部用完此款,问:
①原计划所购买的彩电和冰箱各多少台?
②活动启动后,在不增加区政府实际负担的情况下,能否多购买两台冰箱?谈谈你的具体实施方案.
查看答案
如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.
(1)找出图中与全等的三角形,并说明理由;
(2)猜想三条线段PC、PE、PF之间的比例关系,并说明理由.

manfen5.com 满分网 查看答案
在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB,分别以点A,B为圆心,以大于manfen5.com 满分网AB的长为半径画弧,两弧相交于点C,连接AC;再以点C为圆心,以AC长为半径画弧,交AC延长线于点D,连接DB,则△ABD就是直角三角形.
(1)请你说明其中的道理;
(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).

manfen5.com 满分网 查看答案
若关于x的方程manfen5.com 满分网无解,求m的值.
查看答案
已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE=    时,A、C、F在一条直线上.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.