满分5 > 初中数学试题 >

根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰...

根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.
(1)如图①△ABC中,∠C=90°,∠A=24°
manfen5.com 满分网
①作图:
②猜想:
③验证:
(2)如图②△ABC中,∠C=84°,∠A=24°.
manfen5.com 满分网
①作图:
②猜想:
③验证:
(1)①痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可, ②利用各角之间的关系得出∠A+∠B=90°; ③可根据△ABC中,∠A=24°,∠B=66°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线. (2)①痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可. ②利用各角之间的关系得出∠B=3∠A; ③利用特殊角∠A=24°,∠B=72°,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线. 【解析】 (1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可, 在边AB上找出所需要的点D,则直线CD即为所求(2分) ②猜想:∠A+∠B=90°,(4分) ③验证:如在△ABC中,∠A=24°,∠B=66°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(5分) (2)答:①作图:痕迹能体现作线段AB的垂直平分线,或作∠ABD=∠A. 在边AC上找出所需要的点D,则直线BD即为所求(6分) ②猜想:∠B=3∠A(8分) ③验证:如在△ABC中,∠A=24°,∠B=72°,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线.(9分).
复制答案
考点分析:
相关试题推荐
已知关于x的方程mx2+(3-2m)x+(m-3)=0,其中m>0.
(1)求证:方程总有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2,其中x1>x2,若manfen5.com 满分网,求y与m的函数关系式;
(3)在(2)的条件下,请根据函数图象,直接写出使不等式y≤-m成立的m的取值范围.

manfen5.com 满分网 查看答案
如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上.
(1)若C、D恰好是边AO,OB的中点,求矩形CDEF的面积;
(2)若tan∠CDO=manfen5.com 满分网,求矩形CDEF面积的最大值.

manfen5.com 满分网 查看答案
某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.
(1)请把三个图表中的空缺部分都补充完整;
(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
编号教学方式最喜欢的频数频率
1教师讲,学生听200.10
2教师提出问题,学生探索思考0.5
3学生自行阅读教材,独立思考30
4分组讨论,解决问题0.25
manfen5.com 满分网
查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后再绕点B按逆时针方向旋转90°的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
试确定实数a的取值范围,使不等式组manfen5.com 满分网恰有两个整数解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.