满分5 > 初中数学试题 >

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半...

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
manfen5.com 满分网
(1)根据折叠的性质可知:AE=OA,OD=DE,那么可在直角三角形ABE中,用勾股定理求出BE的长,进而可求出CE的长,也就得出了E点的坐标. 在直角三角形CDE中,CE长已经求出,CD=OC-OD=4-OD,DE=OD,用勾股定理即可求出OD的长,也就求出了D点的坐标. (2)很显然四边形PMNE是个矩形,可用时间t表示出AP,PE的长,然后根据相似三角形APM和AED求出PM的长,进而可根据矩形的面积公式得出S,t的函数关系式,根据函数的性质即可得出S的最大值及对应的t的值. (3)本题要分两种情况进行讨论: ①ME=MA时,此时MP为三角形ADE的中位线,那么AP=,据此可求出t的值,过M作MF⊥OA于F,那么MF也是三角形AOD的中位线,M点的横坐标为A点横坐标的一半,纵坐标为D点纵坐标的一半.由此可求出M的坐标. ②当MA=AE时,先在直角三角形OAD中求出斜边AD的长,然后根据相似三角形AMP和ADE来求出AP,MP的长,也就能求出t的值.根据折叠的性质,此时AF=AP,MF=MP,也就求出了M的坐标. 【解析】 (1)依题意可知,折痕AD是四边形OAED的对称轴, ∴在Rt△ABE中,AE=AO=5,AB=4. BE==3. ∴CE=2. ∴E点坐标为(2,4). 在Rt△DCE中,DC2+CE2=DE2, 又∵DE=OD. ∴(4-OD)2+22=OD2. 解得:OD=. ∴D点坐标为(0,). (2)如图①∵PM∥ED, ∴△APM∽△AED. ∴, 又知AP=t,ED=,AE=5, PM=×=, 又∵PE=5-t. 而显然四边形PMNE为矩形. S矩形PMNE=PM•PE=×(5-t)=-t2+t; ∴S四边形PMNE=-(t-)2+, 又∵0<<5. ∴当t=时,S矩形PMNE有最大值. (3)(i)若以AE为等腰三角形的底,则ME=MA(如图①) 在Rt△AED中,ME=MA, ∵PM⊥AE, ∴P为AE的中点, ∴t=AP=AE=. 又∵PM∥ED, ∴M为AD的中点. 过点M作MF⊥OA,垂足为F,则MF是△OAD的中位线, ∴MF=OD=,OF=OA=, ∴当t=时,(0<<5),△AME为等腰三角形. 此时M点坐标为(,). (ii)若以AE为等腰三角形的腰,则AM=AE=5(如图②) 在Rt△AOD中,AD===. 过点M作MF⊥OA,垂足为F. ∵PM∥ED, ∴△APM∽△AED. ∴. ∴t=AP===2, ∴PM=t=. ∴MF=MP=,OF=OA-AF=OA-AP=5-2, ∴当t=2时,(0<2<5),此时M点坐标为(5-2,). 综合(i)(ii)可知,t=或t=2时,以A,M,E为顶点的三角形为等腰三角形, 相应M点的坐标为(,)或(5-2,).
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

manfen5.com 满分网 查看答案
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值.

manfen5.com 满分网 查看答案
如图:是一个几何体的三视图,
(1)描述这个三视图:______
(2)求出这个几何体的体积;
(3)若有一只蚂蚁想要从几何体上表面的A处沿上表面爬到B处,见俯视图示意图,则求蚂蚁爬行的最短距离.

manfen5.com 满分网 查看答案
如图是我市某学校的爱心捐款活动,全校同学纷纷拿出自己的零花钱,捐款给贫苦地区.对部分学生捐款情况进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
manfen5.com 满分网
(1)在这次调查中共调查了多少名学生?
(2)求捐款20元的学生人数,并补完整频数分布直方图;
(3)求捐款50元的人数在扇形中的圆心角度数;
(4)若该校捐款金额不少于50000元,请估算该校捐款同学的人数至少有几名?
查看答案
如图,已知△ABC的两边长为m、n,夹角为α,求作所有可能满足下列条件的三角形EFG:含有一个内角为α;有两条边长分别为m、n,且与△ABC不全等.(要求:尺规作图,不写画法,保留作图痕迹.在图中标注m、n、α、E、F、G)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.