满分5 > 初中数学试题 >

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠D...

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:①BE=CD;②△AMN是等腰三角形;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

manfen5.com 满分网
(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形. (2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变. (3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形相似). (1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD, ∵AB=AC,AD=AE, ∴△ABE≌△ACD, ∴BE=CD. ②由△ABE≌△ACD,得 ∠ABE=∠ACD,BE=CD, ∵M、N分别是BE,CD的中点, ∴BM=CN. 又∵AB=AC, ∴△ABM≌△ACN. ∴AM=AN,即△AMN为等腰三角形. (2)【解析】 (1)中的两个结论仍然成立. (3)证明:在图②中正确画出线段PD, 由(1)同理可证△ABM≌△ACN, ∴∠CAN=∠BAM∴∠BAC=∠MAN. 又∵∠BAC=∠DAE, ∴∠MAN=∠DAE=∠BAC. ∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形. ∴△PBD和△AMN都为顶角相等的等腰三角形, ∴∠PBD=∠AMN,∠PDB=∠ANM, ∴△PBD∽△AMN.
复制答案
考点分析:
相关试题推荐
如图,某拦河坝截面的原设计方案为:AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m.为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)

manfen5.com 满分网 查看答案
在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务.问接到指示后,该部队每天加固河堤多少米?
查看答案
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.
(1)D型号种子的粒数是______
(2)请你将图2的统计图补充完整;
(3)通过计算说明,应选哪一个型号的种子进行推广;
(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.manfen5.com 满分网
查看答案
已知x=-2,求manfen5.com 满分网的值.
查看答案
如图①,O1,O2,O3,O4为四个等圆的圆心,A,B,C,D为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是    ;如图②,O1,O2,O3,O4,O5为五个等圆的圆心,A,B,C,D,E为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是    .(答案不唯一)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.