满分5 > 初中数学试题 >

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上...

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.
注:计算结果不取近似值.

manfen5.com 满分网
(1)根据l1的解析式可求l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,实际上是l2与l1的顶点关于x轴对称,即l2的顶点为(0,4),设顶点式,可求抛物线l2的解析式; (2)平行四边形是中心对称图形,A、C关于原点对称,则B、D也关于原点对称,设点B(m,n),则点D(-m,-n),由于B(m,n)点是y=x2-4上任意一点,则n=m2-4,∴-n=-(m2-4)=-m2+4=-(-m)2+4,可知点D(-m,-n)在l2y=-x2+4的图象上; (3)构造∠ABC=90°是关键,连接OB,只要证明OB=OC即可,为求OB长,过点B作BH⊥x轴于H,用B的坐标为(x,x2-4),可求OB,用OB=OC求x,再计算面积. 【解析】 (1)设l2的解析式为y=ax2+bx+c(a≠0), ∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称, ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),(1分) ∴(2分) ∴a=-1,b=0,c=4, 即l2的解析式为y=-x2+4.(3分) (还可利用顶点式、对称性关系等方法解答) (2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4,(*) ∵四边形ABCD′是平行四边形,点A、C关于原点O对称, ∴B、D′关于原点O对称,(4分) ∴点D′的坐标为D′(-m,-n). 由式方程式可知,-n=-(m2-4)=-(-m)2+4, 即点D′的坐标满足y=-x2+4,又D与D′关于y轴对称, ∴点D在l2上.(5分) (3)▱ABCD能为矩形.(6分) 过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,可设点B的坐标为(x,x2-4), 则OH=|x|,BH=|x2-4|. 易知,当且仅当BO=AO=2时,▱ABCD为矩形. 在Rt△OBH中,由勾股定理得,|x|2+|x2-4|2=22, (x2-4)(x2-3)=0, ∴x=±2(舍去)、x=±.(7分) 所以,当点B坐标为B(,-1)或B′(-,-1)时,▱ABCD为矩形, 此时,点D的坐标分别是D(-,1)、D′(,1). 因此,符合条件的矩形有且只有2个,即矩形ABCD和矩形AB′CD′.(8分) 设直线AB与y轴交于E,显然,△AOE∽△AHB, ∴=, ∴. ∴EO=4-2.(9分) 由该图形的对称性知矩形ABCD与矩形AB′CD′重合部分是菱形,其面积为 S=2S△ACE=2××AC×EO=2××4×(4-2)=16-8.(10分) (还可求出直线AB与y轴交点E的坐标解答)
复制答案
考点分析:
相关试题推荐
在矩形ABCD中,已知AB=a,BC=b,P是边CD上异于点C、D的任意一点.
(1)若a=2b,当点P在什么位置时,△APB与△BCP相似?(不必证明)
(2)若a≠2b,①判断以AB为直径的圆与直线CD的位置关系,并说明理由;②是否存在点P,使以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似?(不必证明)
查看答案
(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

manfen5.com 满分网 查看答案
某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
(2)当k=12时,请设计最省钱的购买方案.
查看答案
如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.
(1)用含α的式子表示h(不必指出α的取值范围);
(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?

manfen5.com 满分网 查看答案
已知一次函数y=x+m与反比例函数y=manfen5.com 满分网的图象在第一象限的交点为P(x,2).
(1)求x及m的值;
(2)求一次函数的图象与两坐标轴的交点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.