满分5 > 初中数学试题 >

如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O...

如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.
(1)证明:BE=CE;
(2)证明:∠D=∠AEC;
(3)若⊙O的半径为5,BC=8,求△CDE的面积.

manfen5.com 满分网
(1)根据OD⊥BC运用垂径定理得到弧BE=弧CE,再根据等弧对等弦证明; (2)结合切线的性质定理和等角的余角相等,把∠D转化为∠OCB,再根据等边对等角和圆周角定理的推论进行证明; (3)根据垂径定理可以求得DE边上的高CF,只需求得DE的长.要求DE的长,求得OD的长减去OE的长就可.根据勾股定理首先求得OF的长,再根据相似三角形的性质求得OD的长. (1)证明:∵BC是⊙O的弦,半径OE⊥BC, ∴BE=CE. (2)证明:连接OC, ∵CD与⊙O相切于点C, ∴∠OCD=90°. ∴∠OCB+∠DCF=90°. ∵∠D+∠DCF=90°, ∴∠OCB=∠D, ∵OB=OC, ∴∠OCB=∠B, ∵∠B=∠AEC, ∴∠D=∠AEC. (3)【解析】 在Rt△OCF中,OC=5,CF=4, ∴OF==3. ∵∠COF=∠DOC,∠OFC=∠OCD, ∴Rt△OCF∽Rt△ODC. ∴,即. ∴DE=OD-OE=-5=. ∴S△CDE=•DE•CF=××4=.
复制答案
考点分析:
相关试题推荐
东方专卖店专销某种品牌的钢笔,进价12元/支,售价20元/支.为了促销,专卖店决定凡是买10支以上的,每多买一支,售价就降低0.10元(例如,某人买20支计算器,于是每只降价0.10×(20-10)=1元,就可以按19元/支的价格购买),但是最低价为16元/支.
(1)求顾客一次至少买多少支,才能以最低价购买?
(2)写出当一次购买x支时(x>10),利润y(元)与购买量x(支)之间的函数关系式;
(3)有一天,一位顾客买了46支,另一位顾客买了50支,专实店发现卖了50支反而比卖46支赚的钱少,为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/支至少要提高到多少,为什么?
查看答案
如图,P为圆外一点,PA切圆于A,PA=8,直线PCB交圆于C、B,且PC=4,连接AB、AC,∠ABC=α,∠ACB=β,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为    查看答案
如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是   
manfen5.com 满分网 查看答案
开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.