设抛物线y=ax
2+bx+c与X轴交于两不同的点A(-1,0),B(m,0),(点A在点B的左边),与y轴的交点为点C(0,-2),且∠ACB=90°.
(1)求m的值和该抛物线的解析式;
(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y=x+1与该抛物线的另一交点.在X轴上是否存在点P,使得以P、B、D为顶点的三角形与△AEB相似?若存在,求出点P的坐标;若不存在,请说明理由.
(3)连接AC、BC,矩形FGHQ的一边FG在线段AB上,顶点H、Q分别在线段AC、BC上,若设F点坐标为(t,0),矩形FGHQ的面积为S,当S取最大值时,连接FH并延长至点M,使HM=k•FH,若点M不在该抛物线上,求k的取值范围.
查看答案