满分5 > 初中数学试题 >

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从...

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点. (2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值. (3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值. 【解析】 (1)点M.(1分) (2)经过t秒时,NB=t,OM=2t, 则CN=3-t,AM=4-2t, ∵A(4,0),C(0,4), ∴AO=CO=4, ∵∠AOC=90°, ∴∠BCA=∠MAQ=45°, ∴QN=CN=3-t ∴PQ=1+t,(2分) ∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分) ∴S=-t2+t+2=-t2+t-++2=-(t-)2+,(5分) ∵0≤t<2 ∴当时,S的值最大.(6分) (3)存在.(7分) 设经过t秒时,NB=t,OM=2t 则CN=3-t,AM=4-2t ∴∠BCA=∠MAQ=45°(8分) ①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高 ∴PQ是底边MA的中线 ∴PQ=AP=MA ∴1+t=(4-2t) ∴t= ∴点M的坐标为(1,0)(10分) ②若∠QMA=90°,此时QM与QP重合 ∴QM=QP=MA ∴1+t=4-2t ∴t=1 ∴点M的坐标为(2,0).(12分)
复制答案
考点分析:
相关试题推荐
某公司需在一个月(31天)内完成新建办公楼的装修工程,如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.
(1)求甲、乙两工程队单独完成此项工程所需的天数;
(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元,在规定时间内:A.请甲队单独完成此项工程;B.请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程,以上三种方案哪一种花钱最少?
查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a-b>m(am+b),(m≠-1的实数)其中正确的结论有   
manfen5.com 满分网 查看答案
如图,矩形OABC的面积为manfen5.com 满分网,它的对角线OB与双曲线manfen5.com 满分网相交于点D,且OB:OD=5:3,则k=______

manfen5.com 满分网 查看答案
一个圆弧形拱桥的跨度为6cm,桥的拱高为1cm,那么拱桥的半径是______
查看答案
如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为    cm.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.