满分5 > 初中数学试题 >

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C. (1)求...

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式; (2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标; (3)根据相似三角形对应边的比相等可以求出点P的坐标. 【解析】 (1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得 , 解得. 故抛物线的解析式为y=x2+2x; (2)①当AO为边时, ∵A、O、D、E为顶点的四边形是平行四边形, ∴DE=AO=2, 则D在x轴下方不可能, ∴D在x轴上方且DE=2, 则D1(1,3),D2(-3,3); ②当AO为对角线时,则DE与AO互相平分, ∵点E在对称轴上,对称轴为直线x=-1, 由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1) 故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1); (3)存在, 如图:∵B(-3,3),C(-1,-1),根据勾股定理得: BO2=18,CO2=2,BC2=20, ∴BO2+CO2=BC2. ∴△BOC是直角三角形. 假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似, 设P(x,y),由题意知x>0,y>0,且y=x2+2x, ①若△AMP∽△BOC,则=, 即 x+2=3(x2+2x) 得:x1=,x2=-2(舍去). 当x=时,y=,即P(,). ②若△PMA∽△BOC,则=, 即:x2+2x=3(x+2) 得:x1=3,x2=-2(舍去) 当x=3时,y=15,即P(3,15). 故符合条件的点P有两个,分别是P(,)或(3,15).
复制答案
考点分析:
相关试题推荐
某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
查看答案
如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交半圆于点D,点E是manfen5.com 满分网的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线.

manfen5.com 满分网 查看答案
为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A北偏西45°并距该岛20海里的B处待命.位于该岛正西方向C处的某外国商船遭到海盗袭击,船长发现在其北偏东60°的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C处?(结果精确到个位.参考数据:manfen5.com 满分网≈1.4,manfen5.com 满分网≈1.7)

manfen5.com 满分网 查看答案
为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见表:
型号占地面积
(单位:m2/个 )
使用农户数
(单位:户/个)
造价
(单位:万元/个)
A15182
B20303
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.
求满足条件的方案共有几种,哪种建造方案最省钱?
查看答案
某初级中学准备随机选出七、八、九三个年级各1名学生担任领操员.现已知这三个年级分别选送一男、一女共6名学生为备选人.
(1)请你利用树状图或表格列出所有可能的选法;
(2)求选出“两男一女”三名领操员的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.