满分5 > 初中数学试题 >

已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC...

已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为manfen5.com 满分网,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知三点,可用待定系数法求出二次函数解析式; (2)关键在于正确作出旋转后的图形,结合几何知识,利用数形结合的思想求解; (3)应当明确△PCG构成等腰三角形有三种情况,逐一讨论求解,要求思维的完备性. 【解析】 (1)由已知,得C(3,0),D(2,2), ∵∠ADE=90°-∠CDB=∠BCD, ∴AD=BC.AD=2. ∴E(0,1).(1分) 设过点E、D、C的抛物线的解析式为y=ax2+bx+c(a≠0). 将点E的坐标代入,得c=1.将c=1和点D、C的坐标分别代入, 得(2分) 解这个方程组,得 故抛物线的解析式为y=-x2+x+1;(3分) (2)EF=2GO成立.(4分) ∵点M在该抛物线上,且它的横坐标为, ∴点M的纵坐标为.(5分) 设DM的解析式为y=kx+b1(k≠0),将点D、M的坐标分别代入, 得, 解得 ∴DM的解析式为y=-x+3.(6分) ∴F(0,3),EF=2.(7分) 过点D作DK⊥OC于点K,则DA=DK. ∵∠ADK=∠FDG=90°, ∴∠FDA=∠GDK. 又∵∠FAD=∠GKD=90°, ∴△DAF≌△DKG. ∴KG=AF=1. ∵OC=3, ∴GO=1.(8分) ∴EF=2GO; (3)∵点P在AB上,G(1,0),C(3,0), 则设P(t,2). ∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2. ①PG=PC,则(t-1)2+22=(3-t)2+22, 解得t=2. ∴P(2,2),此时点Q与点P重合, ∴Q(2,2).(9分) ②若PG=GC,则(t-1)2+22=22, 解得t=1, ∴P(1,2), 此时GP⊥x轴.GP与该抛物线在第一象限内的交点Q的横坐标为1, ∴点Q的纵坐标为, ∴Q(1,).(10分) ③若PC=GC,则(3-t)2+22=22,解得t=3, ∴P(3,2),此时PC=GC=2,△PCG是等腰直角三角形. 过点Q作QH⊥x轴于点H,则QH=GH,设QH=h, ∴Q(h+1,h). ∴(h+1)2+(h+1)+1=h. 解得h1=,h2=-2(舍去). ∴Q(,).(12分) 综上所述,存在三个满足条件的点Q,即Q(2,2)或Q(1,)或Q(,).
复制答案
考点分析:
相关试题推荐
某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:
月份1月5月
销售量3.9万台4.3万台
(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:manfen5.com 满分网≈5.831,manfen5.com 满分网≈5.916,manfen5.com 满分网≈6.083,manfen5.com 满分网≈6.164)
查看答案
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点manfen5.com 满分网E,且AE=AC.
(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长.
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=manfen5.com 满分网,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=-3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.