满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴...

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

manfen5.com 满分网
(1)把点E,A、B的坐标代入函数表达式,即可求出a、b、c的值; (2)根据C点的坐标求出直线CD的解析式,然后结合图形设出K点的坐标(t,0),表达出H点和G点的坐标,列出HG关于t的表达式,根据二次函数的性质求出最大值; (3)需要讨论解决,①若线段AC是以点A、C,M、N为顶点的平行四边形的边,当点N在点M的左侧时,MN=3-n;当点N在点M的右侧时,MN=n-3,然后根据已知条件在求n的坐标就容易了 ②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线时,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P点坐标为(-1,0) 过P点作NP⊥x轴,交抛物线于点N,结合已知条件再求n的坐标就容易了 【解析】 (1)设抛物线的函数表达式为y=a(x-1)(x+3) ∵抛物线交y轴于点E(0,-3),将该点坐标代入上式,得a=1 ∴所求函数表达式为y=(x-1)(x+3), 即y=x2+2x-3; (2)∵点C是点A关于点B的对称点,点A坐标(-3,0),点B坐标(1,0), ∴点C坐标(5,0), ∴将点C坐标代入y=-x+m,得m=5, ∴直线CD的函数表达式为y=-x+5, 设K点的坐标为(t,0),则H点的坐标为(t,-t+5),G点的坐标为(t,t2+2t-3), ∵点K为线段AB上一动点, ∴-3≤t≤1, ∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-(t+)2+, ∵-3<-<1, ∴当t=-时,线段HG的长度有最大值; (3)∵点F是线段BC的中点,点B(1,0),点C(5,0), ∴点F的坐标为(3,0), ∵直线l过点F且与y轴平行, ∴直线l的函数表达式为x=3, ∵点M在直线l上,点N在抛物线上, ∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n-3), ∵点A(-3,0),点C(5,0), ∴AC=8, 分情况讨论: ①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8. 当点N在点M的左侧时,MN=3-n, ∴3-n=8,解得n=-5, ∴N点的坐标为(-5,12), 当点N在点M的右侧时,MN=n-3, ∴n-3=8, 解得n=11, ∴N点的坐标为(11,140), ②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P点坐标为(-1,0) 过P点作NP⊥x轴,交抛物线于点N, 将x=-1代入y=x2+2x-3,得y=-4, 过点N作直线NM交直线l于点M, 在△BPN和△BFM中, ∠NBP=∠MBF, BF=BP, ∠BPN=∠BFM=90°, ∴△BPN≌△BFM, ∴NB=MB, ∴四边形ANCM为平行四边形, ∴坐标(-1,-4)的点N符合条件, ∴当N的坐标为(-5,12),(11,140),(-1,-4)时,以点A、C、M、N为顶点的四边形为平行四边形.
复制答案
考点分析:
相关试题推荐
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
manfen5.com 满分网
(1)若∠1=70°,求∠MKN的度数;
(2)△MNK的面积能否小于manfen5.com 满分网?若能,求出此时∠1的度数;若不能,试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.
查看答案
如图,已知函数manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.
(1)求一次函数的解析式;
(2)将一次函数y=kx+b的图象沿x轴负方向平移a(a>0)个单位长度得到新图象,求这个新图象与函数manfen5.com 满分网的图象只有一个交点M时a的值及交点M的坐标.

manfen5.com 满分网 查看答案
一副直角三角板如图放置,点C在FD延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10.
(1)求∠CBD的度数;
(2)试求CD的长.

manfen5.com 满分网 查看答案
甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
查看答案
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
manfen5.com 满分网
(1)这次抽查的家长总人数为______
(2)请补全条形统计图和扇形统计图;
(3)若本校的学生总人数为3600人,试估计持赞成态度的学生有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.