满分5 > 初中数学试题 >

为发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.从今年1月1日开始...

为发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.从今年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成如下一次函数关系:
月份x12
再生资源处理量y(吨)4050
月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为:z=manfen5.com 满分网,每处理一吨再生资源得到的新产品的售价定为100元.
(1)该单位哪个月获得利润最大?最大是多少?
(2)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三、四月份的再生资源处理量都比二月份减少了m%,该新产品的产量也随之减少,其售价都比二月份的售价增加了0.6m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位在保持三月份的再生资源处理量和新产品售价的基础上,其利润是二月份的利润的一样,求m.( m保留整数)
 (manfen5.com 满分网
(1)首先根据表格求出y与x的函数关系式,然后利用已知条件即可得到z与x的函数关系式,接着就可以得到利润与x之间的函数关系式,利用二次函数的性质即可求解; (2)首先根据已知条件和(1)中的函数关系式可以分别求出:二月处理量、二月价格、二月成本、二月利润、三月、四月、五月处理量、三月、四月、五月价格、五月成本,接着利用已知条件即可列出方程100×50(1-m%)(1+0.6m%)-950×(1-20%)=4050,解方程即可解决问题. 【解析】 (1)y=10x+30 z= =50x2+100x+550(2分) 利润S=100y-z =-50x2+900x+2450 当x=9时,S最大=6500元(2分) (2)二月处理量:50吨 二月价格:100元/吨 二月成本:950元 二月利润:4050元 三月、四月、五月处理量:50(1-m%)吨 三月、四月、五月价格:100(1+0.6m%)元 五月成本:950(1-20%)元(2分) 五月利润: 100×50(1-m%)(1+0.6m%)-950×(1-20%)=4050(2分) 令m%=a,则a= a1=,a2=, ∴m≈8(2分)
复制答案
考点分析:
相关试题推荐
通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=manfen5.com 满分网.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=______
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______
(3)如图②,已知sinA=manfen5.com 满分网,其中∠A为锐角,试求sadA的值.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.
(1)设∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(2)在(1)的条件下,求弦CD的长.

manfen5.com 满分网 查看答案
已知圆锥的侧面积为16πcm2
(1)求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;
(2)写出自变量r的取值范围;
(3)当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.
查看答案
如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-manfen5.com 满分网.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
manfen5.com 满分网
查看答案
先化简再求值:manfen5.com 满分网,从不等式manfen5.com 满分网<x<tan60°解中选一个你喜欢的数代入,求原分式的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.