满分5 > 初中数学试题 >

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上...

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为manfen5.com 满分网时,求正方形的边长.

manfen5.com 满分网
(1)由题意得MB=NB,∠ABN=15°,所以∠EBN=45°,容易证出△AMB≌△ENB; (2)①根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小; ②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长(如图); (3)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=30°,设正方形的边长为x,在Rt△EFC中,根据勾股定理求得正方形的边长为. (1)证明:∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°. ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN. 即∠MBA=∠NBE. 又∵MB=NB, ∴△AMB≌△ENB(SAS).(5分) (2)【解析】 ①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.(7分) ②如图,连接CE,当M点位于BD与CE的交点处时, AM+BM+CM的值最小.(9分) 理由如下:连接MN,由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形. ∴BM=MN. ∴AM+BM+CM=EN+MN+CM.(10分) 根据“两点之间线段最短”,得EN+MN+CM=EC最短 ∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(11分) (3)【解析】 过E点作EF⊥BC交CB的延长线于F, ∴∠EBF=∠ABF-∠ABE=90°-60°=30°. 设正方形的边长为x,则BF=x,EF=. 在Rt△EFC中, ∵EF2+FC2=EC2, ∴()2+(x+x)2=.(12分) 解得,x1=,x2=-(舍去负值). ∴正方形的边长为.(13分)
复制答案
考点分析:
相关试题推荐
注意:为了使学生更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求,进行解答.
某市为治理污水,需要铺设一段全长为300 米的污水排放管道.铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.
解题方案:
设原计划每天铺设x米管道
(Ⅰ)用含x的代数式表示:后来每天铺设管道______米;
(Ⅱ)根据题意,列出相应方程______
(Ⅲ)解这个方程,得______
(Ⅳ)检验:______
(Ⅴ)答:原计划每天铺设管道______米.
查看答案
如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(manfen5.com 满分网≈1.732,结果精确到0.1m)

manfen5.com 满分网 查看答案
如图(1),在Rt△ACB中,∠C=90°,以BC为直径作⊙O交AB于点D.
(Ⅰ)求证:manfen5.com 满分网=manfen5.com 满分网
(Ⅱ)当点E是AC的中点时,如图(2)所示,直线ED与⊙O相切吗?请说明理由.

manfen5.com 满分网 查看答案
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.