满分5 > 初中数学试题 >

【问题情境】 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的...

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+manfen5.com 满分网)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+manfen5.com 满分网(x>0)的图象和性质.
①填写下表,画出函数的图象;
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网1234
y       
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+manfen5.com 满分网(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

manfen5.com 满分网
(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值; (2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[+2],即可求出答案. 【解析】 (1)①故答案为:,,,2,,,. 函数y=x+的图象如图: ②答:函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;当x=1时,函数y=x+(x>0)的最小值是2. ③【解析】 ①y=x+=+-2•+2•, =+2, 当-=0,即x=1时,函数y=x+(x>0)的最小值是2, ②y=x+=+=-2, ∵x>0, ∴的值是正数,并且任何一个正数都行, ∴此时不能求出最值, 答:函数y=x+(x>0)的最小值是2. (2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为时,它的周长最小,最小值是4.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=manfen5.com 满分网x+3的坐标三角形的三条边长;
(2)若函数y=manfen5.com 满分网x+b(b为常数)的坐标三角形周长为16,求此三角形面积.

manfen5.com 满分网 查看答案
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;
(1)求证:AP=AC;
(2)若AC=3,求PC的长.

manfen5.com 满分网 查看答案
如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.
manfen5.com 满分网
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.