满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点...

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

manfen5.com 满分网
(1)通过一次函数可求出A、B两点的坐标及线段的长,再在Rt△AOP利用勾股定理可求得当PB=PA时k的值,再与圆的半径相比较,即可得出⊙P与x轴的位置关系. (2)根据正三角形的性质,分两种情况讨论, ①当圆心P在线段OB上时,②当圆心P在线段OB的延长线上时,从而求得k的值. 【解析】 (1)⊙P与x轴相切,(1分) ∵直线y=-2x-8与x轴交于A(-4,0),与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k. ∵在Rt△AOP中,k2+42=(8+k)2 ∴k=-3,(2分) ∴OP等于⊙P的半径. ∴⊙P与x轴相切.(1分) (2)设⊙P1与直线l交于C,D两点,连接P1C,P1D, 当圆心P1在线段OB上时,作P1E⊥CD于E, ∵△P1CD为正三角形, ∴DE=CD=,P1D=3. ∴P1E=. ∵∠AOB=∠P1EB=90°,∠ABO=∠P1BE, ∴△AOB∽△P1EB. ∴,即, ∴.(2分) ∴P1O=BO-BP1=8-. ∴P1(0,-8). ∴k=-8.(2分) 当圆心P2在线段OB延长线上时,同理可得P2(0,--8). ∴k=--8.(2分) ∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
复制答案
考点分析:
相关试题推荐
2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:
manfen5.com 满分网
(1)请将统计表中遗漏的数据补上;
(2)扇形图中表示30-35岁的扇形的圆心角是多少度?
(3)在参加调查的30-35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?
(4)从上表中,你还能获得其它的信息吗?(写出一条即可)
查看答案
将▱ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
(1)求证:△ABE≌△AGF.
(2)连接AC,若▱ABCD的面积等于8,manfen5.com 满分网,AC•EF=y,试求y与x之间的函数关系式.

manfen5.com 满分网 查看答案
如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin∠COD=manfen5.com 满分网.求:
(1)弦AB的长; 
(2)CD的长.

manfen5.com 满分网 查看答案
解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.
查看答案
(1)计算:manfen5.com 满分网
(2)已知manfen5.com 满分网,求分式manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.