满分5 > 初中数学试题 >

△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△A...

△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

manfen5.com 满分网
(1)分两种情况,点P可以在AC上时和当点P在BC上时,利用三角函数分别用含t的代数式表示出PM,AM,再用S△APM=AM•PM得出y与t的函数关系式, (2)当PM=QN时,四边形MNQP为矩形,建立含t的方程,求得t的值, (3)以C,P,Q为顶点的三角形与△ABC相似有两种情况,△PQC∽△ABC时和△QPC∽△ABC,分别相似三角形的判定和性质,求得相对应的t的值. 【解析】 (1)当点P在AC上时,∵AM=t,∴PM=AM•tan60°=t. ∴y=t•t=t2(0≤t≤1). 当点P在BC上时,PM=BM•tan30°=(4-t). y=t•(4-t)=-t2+t(1≤t≤3). (2)∵AC=2,∴AB=4.∴BN=AB-AM-MN=4-t-1=3-t. ∴QN=BN•tan30°=(3-t). 由条件知,若四边形MNQP为矩形,需PM=QN,即t=(3-t), ∴t=.∴当t=s时,四边形MNQP为矩形. (3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB, ∴△PQC∽△ABC. 除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=. ∵=cos60°=, ∴AP=2AM=2t. ∴CP=2-2t. ∵=cos30°=, ∴BQ=(3-t). 又∵BC=2, ∴CQ=2. ∴,. ∴当s或s时,以C,P,Q为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的manfen5.com 满分网到B2处时,求其影子B2C2的长;当小明继续走剩下路程的manfen5.com 满分网到B3处,…按此规律继续走下去,当小明走剩下路程的manfen5.com 满分网到Bn处时,其影子BnCn的长为______m.(直接用n的代数式表示)

manfen5.com 满分网 查看答案
已知:线段m、n,
(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);
(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).

manfen5.com 满分网 查看答案
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,角A、B、C的对边分别为a、b、c,设△ABC的面积为s,周长的一半为l.
(1)填写表:
三边a、b、cl-al-bs
3、4、5326
5、12、13
8、15、17
(2)观察表,令m=l-a,n=l-b,探究m、n与s之间的关系,并对你的结论给予证明.

manfen5.com 满分网 查看答案
已知a=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.