满分5 > 初中数学试题 >

如图1,已知直线y=-x与抛物线y=-x2+6交于A,B两点. (1)求A,B两...

如图1,已知直线y=-manfen5.com 满分网x与抛物线y=-manfen5.com 满分网x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
manfen5.com 满分网
(1)联立两函数的解析式即可求出A、B点的坐标. (2)可作AB的垂直平分线设其与x轴,y轴的交点分别为C、D,与AB的交点为M,可根据△BEO∽△OCM求出OC的长,同理可求出OD的长,即可得出C、D的坐标,用待定系数法即可求出AB垂直平分线的解析式.(另一种解法,可根据A、B的坐标得出AB中点的坐标,先求出直线AB的解析式,由于AB的垂直平分线与AB垂直,因此它的斜率与AB的斜率的乘积为-1,由此可得出所求直线的斜率,然后将中点坐标代入即可求出其解析式.) (3)要使三角形ABP的面积最大,那么P到AB的距离就最大,因此P点必在与直线AB平行且与抛物线只有一个交点的一次函数上(设此直线与x轴,y轴的交点为G、H),据此可求出此直线的解析式和P点的坐标.然后可通过在三角形OHG中,根据面积的不同表示方法求出P点到AB的距离(即O到GH的距离),进而可求出三角形ABP的面积. 【解析】 (1)依题意得 解之得 ∴A(6,-3),B(-4,2) (2)作AB的垂直平分线交x轴,y轴于C,D两点,交AB于M(如图1), 由(1)可知:OA=3,OB=2 ∴AB=5 AB-OB= 过B作BE⊥x轴,E为垂足 由△BEO∽△OCM,得:, ∴ 同理:OD=, ∴C(,0),D(0,-) 设CD的解析式为y=kx+b(k≠0) ∴ ∴ ∴AB的垂直平分线的解析式为:y=2x-. (3)若存在点P使△APB的面积最大,则点P在与直线AB平行且和抛物线只有一个交点的直线 y=-x+m上,并设该直线与x轴,y轴交于G,H两点(如图2). ∴ ∴x2-x+m-6=0 ∵抛物线与直线只有一个交点, ∴△=(-)2-4×(m-6)=0, ∴m=, 故x2-x+=0,即(x-1)2=0, 解得:x=1, 将x=1代入y=-+得:y=, ∴P(1,) 在直线GH:y=-x+中, ∴G(,0),H(0,) ∴GH= 设O到GH的距离为d, ∵GH•d=OG•OH ∵×d=×× ∴d=, 又∵由AB∥GH ∴P到AB的距离等于O到GH的距离d. ∴S最大面积=AB•d=×5.
复制答案
考点分析:
相关试题推荐
我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的荔枝重量为x吨,A,B两村运往两仓库的荔枝运输费用分别为yA元和yB元.
(1)请填写下表,并求出yA,yB与x之间的函数关系式;
CD总计
Ax吨200吨
B300吨
总计240吨260吨500吨
(2)试讨论A,B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
查看答案
如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.
(1)求证:manfen5.com 满分网
(2)计算CD•CB的值,并指出CB的取值范围.

manfen5.com 满分网 查看答案
在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合做完成这项工程所需的天数.
查看答案
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?
查看答案
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.