满分5 > 初中数学试题 >

如图,在直角坐标系中,以点A(,0)为圆心,以为半径的圆与x轴交于B、C两点,与...

如图,在直角坐标系中,以点A(manfen5.com 满分网,0)为圆心,以manfen5.com 满分网为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.
(1)求D点坐标.
(2)若B、C、D三点在抛物线y=ax2+bx+c上,求这个抛物线的解析式.
(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.

manfen5.com 满分网
(1)连接AD,构造直角三角形解答,在直角△ADO中,OA=,AD=2,根据勾股定理就可以求出AD的长,求出D的坐标. (2)求出B、C、D的坐标,用待定系数法设出一般式解答; (3)求出抛物线交点坐标,连接AP,则△APM是直角三角形,且AP等于圆的半径,根据三角函数就可以求出AM的长,已知OA,就可以得到OM,则M点的坐标可以求出;同理可以在直角△BNM中,根据三角函数求出BN的长,求出N的坐标,根据待定系数法就可以求出直线MN的解析式.将交点坐标代入直线解析式验证即可. 【解析】 (1)连接AD,得 OA=,AD=2 ∴OD===3 ∴D(0,-3). (2)由B(-,0),C(3,0),D(0,-3)三点在抛物线y=ax2+bx+c上, 得, 解得 ∴抛物线为. (3)连接AP,在Rt△APM中,∠PMA=30°,AP=2 ∴AM=4 ∴M(5,0) ∵ ∴N(0,-5) 设直线MN的解析式为y=kx+b,由于点M(5,0)和N(0,-5)在直线MN上, 则, 解得 ∴直线MN的解析式为 ∵抛物线的顶点坐标为(,-4), 当x=时,y= ∴点(,-4)在直线上, 即直线MN经过抛物线的顶点.
复制答案
考点分析:
相关试题推荐
已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=manfen5.com 满分网,求EF的长.

manfen5.com 满分网 查看答案
某汽车经销公司计划经销A、B两种品牌的轿车50辆,该公司经销这50辆轿车的成本不少于1240万元,但不超过1244万元,两种轿车的成本和售价如下表.
AB
成本(万元/辆)2426
售价(万元/辆)2730
(1)该公司经销这两种品牌轿车有哪几种方案,哪种方案获利最大,最大利润是多少?
(2)根据市场调查,一段时期内,B牌轿车售价不会改变,每辆A牌轿车的售价将会提高a万元(0<a<1.2),且所有两种轿车全部售出,哪种经销方案获利最大?(注:利润=售价-成本)
查看答案
如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖    块.(用含n的代数式表示)
manfen5.com 满分网 查看答案
如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为    m.(边缘部分的厚度忽略不计,结果保留整数)
manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,∠A所对弧的度数为120度.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①cos∠BFE=manfen5.com 满分网;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.