满分5 > 初中数学试题 >

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与...

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

manfen5.com 满分网
(1)根据AB、OB的长,即可得到A、B点的坐标;由于四边形ABCO是平行四边形,则AB=OC,由此可求出OC的长,即可得到C点的坐标,进而可用待定系数法求出抛物线的解析式; (2)根据抛物线的解析式可求出D点的坐标及抛物线的对称轴方程,进而可求出E、F的坐标;若四边形POQE是等腰梯形,则OP=EQ,而OB=EF,可得BP=FQ,根据这个等量关系即可求出t的值; (3)由于∠PBO、∠QOB都是直角,对应相等,若以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,则有两种情况: ①P、Q在y轴同侧,②P、Q在y轴两侧; 每种情况又分为△PBO∽△QOB(此时两者全等),△PBO∽△BOQ两种情况;根据不同的相似三角形所得到的不同的比例线段即可求出t的值. 【解析】 (1)∵四边形ABCO是平行四边形, ∴OC=AB=4 ∴A(4,2),B(0,2),C(-4,0);(1分) ∵抛物线y=ax2+bx+c过点B, ∴c=2(2分) 由题意,有 解得(3分) ∴所求抛物线的解析式为y=-+x+2;(4分) (2)将抛物线的解析式配方,得y=- ∴抛物线的对称轴为x=2;(5分) ∴D(8,0),E(2,2),F(2,0) 欲使四边形POQE为等腰梯形,则有OP=QE,即BP=FQ; ∴t=6-3t, 即t=1.5;(7分) (3)欲使以点P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似, ∵∠PBO=∠BOQ=90°, ∴有=或, 即PB=OQ或OB2=PB•QO; ①若P、Q在y轴的同侧; 当PB=OQ时,t=8-3t, ∴t=2.(8分) 当OB2=PB•QO时,t(8-3t)=4, 即3t2-8t+4=0, 解得t=2,t=; ②当P、Q在y轴的两侧; 当PB=OQ时,Q、C重合,P、A重合,此时t=4; 当OB2=PB•QO时,t(3t-8)=4, 即3t2-8t-4=0, 解得t=; ∵t=<0,故舍去; ∴t=;(11分) ∴当t=2或t=或t=4或t=秒时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似.(12分)
复制答案
考点分析:
相关试题推荐
某产品每件的成本是120元,为了解市场规律,试销阶段按两方案进行销售,结果如下:
方案甲:保持每件150元的售价不变,此时日销售量为50件;
方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数:y=-x+200,据前五天的销售情况如下表:
x(元)130150180180
y(件)50402020
(1)请完成上表:
(2)在前五天中,哪种方案的销售总利润大?
(3)分析两种方案,为获得最大日销售利润,每件产品的售价应定为多少元?此时最大的日销售利润S是多少?
(注:销售利润=销售额-成本额;  销售额=售价×销售量)
查看答案
已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.

manfen5.com 满分网 查看答案
甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
manfen5.com 满分网
(1)在图1中,“7分”所在扇形的圆心角等于______°.
(2)请你将图2的统计图补充完整;
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
manfen5.com 满分网
查看答案
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
manfen5.com 满分网
查看答案
如图,Rt△ABC内接于⊙O,∠ACB的平分线分别交AB、⊙O于点D、E.
求证:CD•CE=AC•BC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.