满分5 > 初中数学试题 >

如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBH...

如图,抛物线y=manfen5.com 满分网x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由于CD∥x轴,因此C,D两点的纵坐标相同,那么C点的坐标就是(0,2),n=2;已知抛物线过D点,可将D的坐标代入抛物线的解析式中即可求出m的值,也就确定了抛物线的解析式; (2)由于旋转翻折只是图形的位置有变化,而大小不变,因此:△BCH≌△BEF,OC=BF,CH=EF.OC的长可以通过C点的坐标得出,求CH即OB的长,要先得出B点的坐标,可通过抛物线的解析式来求得.这样可得出E点的坐标,然后代入抛物线的解析式即可判断出E是否在抛物线上; (3)本题可先表示出直线PQ分梯形ABCD两部分的各自的面积.首先要得出P,Q的坐标. 可先设出P点的坐标如:(a,0).由于直线PQ过E点,因此可根据P,E的坐标用待定系数法表示出直线PQ的解析式,进而可求出Q点的坐标.这样就能表示出BP,AP,CQ,DQ的长,也就能表示出梯形BPQC和梯形APQD的面积.然后分类进行讨论 ①梯形BPQC的面积:梯形APQD的面积=1:3, ②梯形APQD的面积:梯形BPQC的面积=1:3, 根据上述两种不同的比例关系式,可求出各自的a的取值,也就能求出不同的P点的坐标.综上所述可求出符合条件的P点的坐标. 【解析】 (1)∵四边形OBHC为矩形, ∴CD∥AB, 又D(5,2), ∴C(0,2),OC=2. ∴, 解得, ∴抛物线的解析式为:y=x2-x+2; (2)点E落在抛物线上.理由如下: 由y=0,得x2-x+2=0. 解得x1=1,x2=4. ∴A(4,0),B(1,0). ∴OA=4,OB=1. 由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°, 由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°, ∴点E的坐标为(3,-1). 把x=3代入y=x2-x+2,得y=•32-•3+2=-1, ∴点E在抛物线上; (3)存在点P(a,0).记S梯形BCQP=S1,S梯形ADQP=S2,易求S梯形ABCD=8. 当PQ经过点F(3,0)时,易求S1=5,S2=3, 此时S1:S2不符合条件,故a≠3. 设直线PQ的解析式为y=kx+b(k≠0), 则, 解得, ∴. 由y=2得x=3a-6, ∴Q(3a-6,2) ∴CQ=3a-6,BP=a-1,s1=(3a-6+a-1)•2=4a-7. 下面分两种情形: ①当S1:S2=1:3时,S1=S梯形ABCD=×8=2; ∴4a-7=2,解得; ②当S1:S2=3:1时,S1=S梯形ABCD=×8=6; ∴4a-7=6,解得; 综上所述:所求点P的坐标为(,0)或(,0)
复制答案
考点分析:
相关试题推荐
已知,如图,抛物线y=ax2+bx-a的图象与x轴交于A、B两点,点A在点B的左边,顶点坐标为C(0,-4),直线x=m(m>1)与x轴交于点D.
(1)求抛物线的解析式;
(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示).

manfen5.com 满分网 查看答案
如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).
(1)求证:h1=h3; 
(2)设正方形ABCD的面积为S,求证:S=(h2+h12+h12
(3)若manfen5.com 满分网,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.

manfen5.com 满分网 查看答案
BD、CE分别是△ABC的外角平分线,过A作AF⊥BD,AG⊥CE,垂足分别是F、G,易证FG=manfen5.com 满分网(AB+BC+AC).
(1)若BD、CE分别是△ABC的内角平分线,FG与△ABC三边有怎样的数量关系?画出图形并说明理由;
(2)若BD、CE分别是△ABC的内角和外角平分线,FG与△ABC三边有怎样的数量关系?画出图形并说明理由.
查看答案
由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格下调后,城区两楼盘相继开盘,小明同时看中其中的一套房,面积均为100平方米:A楼盘每平方5000元,产权40年;B楼盘每平方12000元,产权70年.A楼盘推出一次付款享受九八折,B楼盘两次降价后为9720元,再一次性送装修费10000元.
(1)求平均每次下调的百分率.
(2)仅从产权的角度考虑,帮助小明作出选择.
查看答案
PM2.5渐渐被公众所熟悉,它是指大气中直径小于或等于2.5微米的颗粒物,虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.某课外兴趣小组根据国家环保总局所公布的空气质量级别表(见表I)以及市环保监测站提供的资料,从中随机抽取了今年1-4月份中30天空气综合污染指数,统计数据如下:
表I:空气质量级别表
空气污染指数0~5051~100101~150151~200201~250251~300大于300
空气质量级别Ⅰ级
(优)
Ⅱ级
(良)
Ⅲ1
轻微污染
Ⅲ2
轻度污染
Ⅳ1
中度污染
Ⅳ2
中度重污染

重度污染
空气综合污染指数:30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,
                  38,45,48,53,57,64,66,77,92,98,130,184,201,235,243
请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:
(1)填写频率分布表中未完成的空格;
分组频数频率
0~500.30
51~100120.40
101~150
151~20030.10
201~25030.10
合计301.00
(2)将空气污染指数0~100称为优良,100~200称为轻污染,200~300称为中污染,300以上称为重污染,根据数据,画出扇形统计图.
(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.