考点分析:
相关试题推荐
如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,OA=R,求R关于x的函数关系式;
(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.
查看答案
某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可获取利润750元.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价-进价)].
(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?
查看答案
如图:在Rt△ABC中,∠C=Rt∠,⊙O是Rt△ABC的内切圆,切点分别是D、E、F,若三角形三边长分别记为BC=a,AC=b,AB=c,内切圆半径记为r,现有小明和小华对半径进行计算,小明计算结果为
,小华计算结果为
,由此两人产生争议.请问这两个答案是否都正确,如正确请结合图形说明理由,如不正确也请说明理由.
查看答案
五月花海,歌声飘扬,2009年5月,义乌市各中小学举行了“班班有歌声”活动,某校比赛聘请了10位老师和10位学生担任评委,其中甲班的得分情况如下统计图(表)所示.
(1)在频数分布直方图中,自左向右第四组的频数为______;
(2)学生评委计分的中位数是______分;
(3)计分办法规定:老师、学生评委的计分各去掉一个最高分、一个最低分,分别计算平均分,别且按老师、学生各占60%、40%的方法计算各班最后得分.已知甲班最后得分为94.4分,求统计表中x的值.
老师评分统计表格:
评委序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
分数 | 94 | 96 | 93 | 91 | x | 92 | 91 | 98 | 96 | 93 |
查看答案
如图,已知线段a及∠O.
(1)只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法);
(2)在△ABC中作BC的中垂线分别交AB、BC于点E、F,如果∠B=30°,求△ABC面积被中垂线分成的两部分之比.
查看答案