满分5 > 初中数学试题 >

在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位...

在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
P从点O出发平移次数可能到达的点的坐标
1次(0,2),(1,0)
2次
3次
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数______的图象上;平移2次后在函数______的图象上…由此我们知道,平移n次后在函数______的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.

manfen5.com 满分网
(1)根据点的平移特点描出每次平移后P点的位置即可; (2)先根据P点平移一次后的点的坐标求出过此点的函数解析式,再根据函数图象平移的性质解答即可; (3)设点Q的坐标为(x,y),求出Q点的坐标,得出n的取值范围,再根据点Q的坐标为正整数即可进行解答. 【解析】 (1)如图所示: P从点O出发平移次数 可能到达的点 的坐标 1次 2次 (0,4),(1,2),(2,0) 3次 (0,6),(1,4),(2,2),(3,0) (2)设过(0,2),(1,0)点的函数解析式为:y=kx+b(k≠0), 则, 解得, 故第一次平移后的函数解析式为:y=-2x+2; ∴答案依次为:y=-2x+2;y=-2x+4;y=-2x+2n. (3)设点Q的坐标为(x,y),依题意,. 解这个方程组,得到点Q的坐标为. ∵平移的路径长为x+y, ∴50≤≤56. ∴37.5≤n≤42.(9分) ∵点Q的坐标为正整数, ∴n是3的倍数,n可以取39、42, ∴点Q的坐标为(26,26),(28,28).
复制答案
考点分析:
相关试题推荐
某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元,要使每盆的盈利达到10元,每盆应该植多少株?
小明的解法如下:
【解析】
设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为(3-0.5x)元,
由题意得(x+3)(3-0.5x)=10,
化简,整理得:x2-3x+2=0
解这个方程,得:x1=1,x2=2,
答:要使每盆的盈利达到10元,每盆应该植入4株或5株.
(1)本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:______
(2)请用一种与小明不相同的方法求解上述问题.
查看答案
某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:
组别成绩(分)频数
A50≤x<603
B60≤x<70m
C70≤x<8010
D80≤x<90n
E90≤x<10015
(1)频数分布表中的m=______,n=______
(2)样本中位数所在成绩的级别是______,扇形统计图中,E组所对应的扇形圆心角的度数是______
(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?

manfen5.com 满分网 查看答案
如图,阅读对话,解答问题.
manfen5.com 满分网
(1)试用树形图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;
(2)求(1)中方程有实数根的概率.
查看答案
如图,已知:△ABC中,
(1)只用直尺(没有刻度)和圆规求作一点P,使点P同时满足下列两个条件到三角形各边的距离都相等(要求保留作图痕迹,不必写出作法).
①点P到∠CAB的两边距离相等:
②点P到A,B两点的距离相等.
(2)若△ABC中,AC=AB=4,∠CAB=120°,那么请计算以△ABC为轴截面的圆锥的侧面积(保留根号和π).

manfen5.com 满分网 查看答案
把整式x2-x-2按下列要求变形:
(1)配方;
(2)因式分解(写出因式分解过程中所采用的方法)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.