已知,Rt△ABC在平面直角坐标系中的位置如图所示,∠A=90°,点B、C都在x轴上,且点A的坐标为(2,
),∠ABC=30°,若抛物线y=ax
2+bx+c恰好过A、B、C三点,且与y轴交于点D.
(1)求点B、C的坐标和抛物线y=ax
2+bx+c的解析式;
(2)若点E是抛物线y=ax
2+bx+c对称轴上一动点,试确定当点E在何处时,△AEC的周长最小?最小是多少?
(3)若点P为抛物线在第一象限图象上的动点,试确定当点P在何处时,四边形PDBC的面积最大?并求出最大面积.
考点分析:
相关试题推荐
凯里市园林局为了对迎宾大道的一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:
项目 树种 | 单价(元/棵) | 成活率 |
A | 80 | 92% |
B | 100 | 98% |
若购买A种树x棵,购树所需的总费用为y元.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若购树的总费用为82000元,则购A种树有多少棵?
(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少元?
查看答案
如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
查看答案
如图①,在等腰梯形ABCD中,AB∥CD,E、F是边AB上的两点,且AE=BF,DE与CF相交于梯形ABDC内一点O.
(1)求证:OE=OF;
(2)如图②,当EF=CD时,请你连接DF、CE,判断四边形DCEF是什么样的四边形,并证明你的结论.
查看答案
张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:
张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).
王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.
(1)计算张红获得入场券的概率,并说明张红的方案是否公平;
(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?
查看答案
某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)该班学生体育测试成绩的中位数落在哪个等级内;
(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
查看答案