△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s
1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s
2(如图2),则s
2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s
3,继续操作下去…,则第10次剪取时,s
10=______;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
考点分析:
相关试题推荐
如图,已知以点A(2,-1)为顶点的抛物线经过点B(4,0).
(1)求该抛物线的解析式;
(2)设点D为抛物线对称轴与x轴的交点,点E为抛物线上一动点,过E作直线y=-2的垂线,垂足为N.
①探索、猜想线段EN与ED之间的数量关系,并证明你的结论;
②抛物线上是否存在点E使△EDN为等边三角形?若存在,请求出所有满足条件的点E的坐标;若不存在,请说明理由.
查看答案
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点 (不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.
(1)弦长等于______
查看答案
某单位欲招聘一名员工,现有A,B,C三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.
(1)请将表一和图一中的空缺部分补充完整;
(2)竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;
(3)若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.
查看答案
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
查看答案
如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AB=4,AD:DC=1:3时,求DE的长.
查看答案