满分5 > 初中数学试题 >

△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2, (1)要在这张...

△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______
(3)求第10次剪取后,余下的所有小三角形的面积之和.

manfen5.com 满分网
(1)分别求出甲、乙两种剪法所得的正方形面积,进行比较即可; (2)按图1中甲种剪法,可知后一个三角形的面积是前一个三角形的面积的,依此可知结果; (3)探索规律可知:,依此规律可得第10次剪取后,余下的所有小三角形的面积之和. 【解析】 (1)解法1:如图甲,由题意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1 如图乙,设MN=x,则由题意,得AM=MQ=PN=NB=MN=x, ∴, 解得 ∴ 又∵ ∴甲种剪法所得的正方形面积更大. 说明:图甲可另解为:由题意得点D、E、F分别为AB、AC、BC的中点,S正方形OFDE=1. 解法2:如图甲,由题意得AE=DE=EC,即EC=1, 如图乙,设MN=x,则由题意得AM=MQ=QP=PN=NB=MN=x, 则, 解得, 又∵,即EC>MN. ∴甲种剪法所得的正方形面积更大. (2),. (3)解法1:探索规律可知: 剩余三角形面积和为2-(S1+S2+…+S10)=2-(1++…+)= 解法2:由题意可知, 第一次剪取后剩余三角形面积和为2-S1=1=S1 第二次剪取后剩余三角形面积和为, 第三次剪取后剩余三角形面积和为, … 第十次剪取后剩余三角形面积和为.
复制答案
考点分析:
相关试题推荐
如图,已知以点A(2,-1)为顶点的抛物线经过点B(4,0).
(1)求该抛物线的解析式;
(2)设点D为抛物线对称轴与x轴的交点,点E为抛物线上一动点,过E作直线y=-2的垂线,垂足为N.
①探索、猜想线段EN与ED之间的数量关系,并证明你的结论;
②抛物线上是否存在点E使△EDN为等边三角形?若存在,请求出所有满足条件的点E的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点 (不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.
(1)弦长等于______

manfen5.com 满分网 查看答案
某单位欲招聘一名员工,现有A,B,C三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.
(1)请将表一和图一中的空缺部分补充完整;
(2)竞聘的最后一个程序是由该单位的300名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;
(3)若每票计1分,该单位将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.
manfen5.com 满分网
查看答案
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
manfen5.com 满分网
查看答案
如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AB=4,AD:DC=1:3时,求DE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.