满分5 > 初中数学试题 >

如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,∠C=60°,BC=6,...

如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,∠C=60°,BC=6,B点坐标为(4,0).点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为manfen5.com 满分网,设运动时间为x秒.
(1)求直线BC的解析式;
(2)当x为何值时,PF⊥AD;
(3)在(2)问条件下,⊙E与直线PF是否相切?如果相切,加以证明,并求出切点的坐标;如果不相切,说明理由.

manfen5.com 满分网
(1)已知BC=6,点B的坐标为(4,0),可求出点C的坐标.设直线BC的解析式为y=kx+b,把已知坐标代入可求. (2)如果PF⊥AD,那么PF与BC也垂直,由此可得出∠CPF=30°,即CF=PC,可用x表示出CF、PC,根据CF,PC的比例关系式可得出关于x的方程,即可求出x的值. (3)本题只要证E到PF的距离是否为即可.过E作PF的垂线,设垂足为G,延长PF交x轴于M,过P作PN∥DA交x轴于N,由于PN∥AD,AD⊥PF,因此NP⊥PF,在直角三角形PNM中,∠PMN=30°,因此NG=2PN=12,那么EM=12-PD-AE=12--=5,那么在直角三角形EGM中,∠PMN=30°,EM=5,因此EG=2.5=r,由此可得出PF与⊙E相切. 求切点即G点坐标时,可过G作x轴的垂线,即可通过构建的直角三角形,用三角形函数求出G点横坐标和纵坐标,进而可求出切点的坐标. 【解析】 (1). (2)∵PF⊥AD,AD∥BC ∴PF⊥BC ∵∠C=60°, ∴∠CPF=30° ∴, 又∵△PDM∽△EAM,且DM:AD=1:3, ∴PD:AE=1:2, 又∵AE=x, ∴PD=x, ∵DC=AB=OA+OB=3+4=7, ∴PC=x+7, 又∵CF=x, ∴ ∴ ∵ ∴当时,PF⊥AD. (3)相切, 过E作PF的垂线,设垂足为G,延长PF交x轴于M,过P作PN∥DA交x轴于N,由于PN∥AD,AD⊥PF,因此NP⊥PF,在直角三角形PNM中,∠PMN=30°,因此MN=2PN=12,那么EM=12-PD-AE=12--=5,那么在直角三角形EGM中,∠PMN=30°,EM=5,因此EG=2.5=r,由此可得出PF与⊙E相切. 求切点即G点坐标时,可过G作x轴的垂线GR⊥BE, ∵∠C=∠DAO=60°,BC=AD=6, ∴AO=3, ∴OE=-3=, ∵EG⊥PF, ∴AD∥GE∥BC, ∴∠GER=60°, ∴ER=EG=, ∴GR=, ∴OR=+=, ∴切点G的坐标为.
复制答案
考点分析:
相关试题推荐
如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=manfen5.com 满分网的图象的一个交点为A(-1,n).
(1)求反比例函数y=manfen5.com 满分网的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.

manfen5.com 满分网 查看答案
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型
价格
A型B型
进价(元/盏)4065
标价(元/盏)60100
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案
为了解某县2011年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:
成绩等级ABCD
人数60xy10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有______名;
(2)表中x,y和m所表示的数分别为:x=______,y=______,m=______
(3)请补全条形统计图;
(4)根据抽样调查结果,请你估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.