满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=9...

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.
manfen5.com 满分网
(1)根据B点坐标可求M点坐标,根据平移关系可知OD=MN=3,可求N点坐标,将D(3,0),M(0,2),N(-3,2)代入抛物线解析式,列方程组求解; (2)连接AC交y轴与G,根据M为BC的中点求C的坐标,根据A、B、C三点坐标,判断BG为AC的垂直平分线,求直线BG的解析式,再与抛物线联立,解方程组求满足条件的P点坐标; (3)由抛物线的对称性可知QE=QD,故当Q、C、D三点共线时,|QE-QC|最大,延长DC与x=-相交于点Q,先求直线CD的解析式,将x=-代入,可求Q点坐标,过点C作CF⊥x轴,垂足为F,此时,|QE-QC|=CD,在Rt△CDF中求CD即可. 【解析】 (1)∵BC∥AD,B(-1,2),M是BC与y轴的交点,∴M(0,2), ∵DM∥ON,D(3,0), ∴N(-3,2), 则, 解得, ∴y=-x2-x+2; (2)连接AC交y轴于G, ∵M是BC的中点, ∴AO=BM=MC,AB=BC=2, ∴AG=GC,即G(0,1), ∵∠ABC=90°, ∴BG⊥AC,即BG是AC的垂直平分线,要使PA=PC,即点P在AC的垂直平分线上,故P在直线BG上, ∴点P为直线BG与抛物线的交点, 设直线BG的解析式为y=kx+b, 则, 解得, ∴y=-x+1, ∴, 解得,, ∴点P(3+3,-2-3)或P(3-3,-2+3), (3)∵y=-x2-x+2=-(x+)2+2, ∴对称轴x=-, 令-x2-x+2=0, 解得x1=3,x2=-6, ∴E(-6,0), 故E、D关于直线x=-对称, ∴QE=QD, ∴|QE-QC|=|QD-QC|, 要使|QE-QC|最大,则延长DC与x=-相交于点Q,即点Q为直线DC与直线x=-的交点, 由于M为BC的中点, ∴C(1,2), 设直线CD的解析式为y=kx+b, 则, 解得, ∴y=-x+3, 当x=-时,y=+3=, 故当Q在(-,)的位置时,|QE-QC|最大, 过点C作CF⊥x轴,垂足为F, 则CD===2.
复制答案
考点分析:
相关试题推荐
如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,∠C=60°,BC=6,B点坐标为(4,0).点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为manfen5.com 满分网,设运动时间为x秒.
(1)求直线BC的解析式;
(2)当x为何值时,PF⊥AD;
(3)在(2)问条件下,⊙E与直线PF是否相切?如果相切,加以证明,并求出切点的坐标;如果不相切,说明理由.

manfen5.com 满分网 查看答案
如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=manfen5.com 满分网的图象的一个交点为A(-1,n).
(1)求反比例函数y=manfen5.com 满分网的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.

manfen5.com 满分网 查看答案
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型
价格
A型B型
进价(元/盏)4065
标价(元/盏)60100
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.