如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是
A.S四边形ABCD=S四边形ECDF B.S四边形ABCD<S四边形ECDF
C.S四边形ABCD=S四边形ECDF+1 D.S四边形ABCD=S四边形ECDF+2
下列等式成立的是
A. B. C. D.
是
A. B. C. D.
如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为 ;
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.
如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.
在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是
A. B. C. D.