阅读下列材料:
如图1,在梯形ABCD中,AD∥BC,点M、N分别在边AB、BC上,且MN∥AD,记AD=a,BC=b,若,则有结论:。
请根据以上结论,解答下列问题:
如图2,3,BE、CF是△ABC的两条角平分线,过EF上一点P分别作△ABC三边的垂线段PP1、PP2、PP3,交BC于点P1,交AB于点P2,交AC于点P3。
(1)若点P为线段EF的中点,求证:PP1=PP2+PP3;
(2)若点P在线段EF上任意位置时,试探究PP1、PP2、PP3的数量关系,给出证明。
如图,已知直线与反比例函数的图象交于A、B两点,与x 轴、y轴分别相交于C、D两点。
(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;
(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由。
已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
已知关于x、y的方程组的解满足不等式组。求满足条件的m的整数值。
如图,AB是⊙O的直径,经过圆上点D的直线CD恰∠ADC=∠B。
(1)求证:直线CD是⊙O的的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E,且AB=,BD=2,求线段AE的长。
如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚D处测得塔顶A和塔基B的仰角分别为600和450。求山的高度BC(结果保留根号)。