(2013年四川南充8分)如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75).
(1)求M,N两村之间的距离;
(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离。
(2013年四川南充8分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0
(1)求出方程的根;
(2)m为何整数时,此方程的两个根都为正整数?
(2013年四川南充8分)如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为BC边上一点(不与B,C重合),过点P作∠APE=∠B,PE交CD 于E.
(1)求证:△APB∽△PEC;
(2)若CE=3,求BP的长.
(2013年四川南充8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
(2013年四川南充6分)某校九年级有1200名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A、B、C、D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.
(1)求抽取参加体能测试的学生人数;
(2)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人?
(2013年四川南充6分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:OE=OF.