如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.
(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.
如图,已知AB是圆O的直径,BC是圆O的弦,弦ED⊥AB于点F,交BC于点G,过点C作圆O的切线与ED的延长线交于点P.
(1)求证:PC=PG;
(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;
(3)在满足(2)的条件下,已知圆为O的半径为5,若点O到BC的距离为时,求弦ED的长.
一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:
(1)乙队单独做需要多少天才能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?
(2013年四川广安10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
(2013年四川广安9分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
(2013年四川广安8分)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).