如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S
△ABC=15,抛物线y=ax
2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为
?若存在,求出点M的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在△ABC中,AB=BC=1,∠ABC=120°,将△ABC绕点B顺时针旋转30°得△A
1BC
1.A
1B交AC于点E,A
1C
1分别交AC,BC于点D,F.
(1)试判断四边形BC
1DA的形状,并说明理由;
(2)求ED的长.
查看答案
某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
查看答案
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m=______;
(2)该市支持选项B的司机大约有多少人?
(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
查看答案
要挖掘地下文物,需测出文物离地面的距离.如图,考古队在文物上方地面A处用仪器测文物C,探测线与地面夹角为30°,在沿文物方向前进20米的B处,又测得探测线与地面夹角为60°,求文物C到地面的距离.
查看答案
如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A
1B
1C
1,再将△A
1B
1C
1绕点A
1逆时针旋转180°,得到△A
1B
2C
2.
(1)在方格纸中画出△A
1B
1C
1和△A
1B
2C
2;
(2)设B点坐标为(-3,-2),B
2点坐标为(4,2),△ABC与△A
1B
2C
2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.
查看答案