满分5 > 初中数学试题 >

操作示例 如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC. ...

操作示例
如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC
实践探究
(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S和S矩形ABCD之间满足的关系式为______
manfen5.com 满分网
(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S和S平行四边形ABCD之间满足的关系式为______
(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S和S四边形ABCD之间满足的关系式为______
解决问题:
(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4=______
manfen5.com 满分网
(1)利用E、F分别为矩形ABCD的边AD、BC的中点,分别求得S阴和S矩形ABCD即可. (2)利用E、F分别为平行四边形ABCD的边AD、BC的中点,分别求则S阴和S平行四边形ABCD即可. (3)利用E、F分别为任意四边形ABCD的边AD、BC的中点,分别求得则S阴和S四边形ABCD即可. (4)先设空白处面积分别为:x、y、m、n由上得,,分别求得S1、S2、S3、S4.然后S1+S2+S3+S4=S阴即可. 【解析】 (1)由E、F分别为矩形ABCD的边AD、BC的中点, 得S阴=BF•CD=BC•CD, S矩形ABCD=BC•CD, 所以; (2)同理可得;; (3)同理可得;; (4)设空白处面积分别为:x、y、m、n(见右图), 由上得,, ∴S1+x+S2+S3+y+S4=.S1+m+S4+S2+n+S3=, ∴(S1+x+S2+S3+y+S4)+(S1+m+S4+S2+n+S3)=S四边形ABCD. ∴(S1+x+S2+S3+y+S4)+(S1+m+S4+S2+n+S3)=S1+x+S2+n+S3+y+S4+m+S阴 ∴S1+S2+S3+S4=S阴=20. 故答案分别为:(1); (2); (3); (4)20.
复制答案
考点分析:
相关试题推荐
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x的函数关系.根据图象解决下列问题:
(1)求直线AB的解析式:
(2)求甲、乙两地之间的距离;
(3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t小时,求t的值.

manfen5.com 满分网 查看答案
在北京举行的2008年奥运会中,某校学生会为了了解全校同学喜欢收看奥运会比赛项目的情况,随机调查了若干名同学(每人只能选其中一项),根据调查结果制作了频数分布表和统计图.请根据图中提供的信息解答下列问题:
(1)补全频数分布表和条形统计图;
最喜欢收看的项目频数(人数)频率
足球20%
篮球25%
排球610%
乒乓球15
其他1220%
合计1
(2)根据以上调查,试估计该校1800名学生中,最喜欢收看篮球比赛的人数.
(3)根据统计图和统计表,谈谈你的想法.

manfen5.com 满分网 查看答案
如图(1)矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?
(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)
(2)折叠后重合部分是什么图形?试说明理由.
manfen5.com 满分网
查看答案
一辆汽车从A地驶往B地,前manfen5.com 满分网路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
查看答案
有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.
A.a6÷a2=a4
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
(1)用画树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A,B,C,D表示);
(2)分别求抽取的两张卡片上算式都正确的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.