满分5 > 初中数学试题 >

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、...

如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)设抛物线解析式为y=ax2+bx,把已知坐标代入求出抛物线的解析式. (2)求出S的面积,根据t的取值不同分三种情况讨论S与t的函数关系式. (3)根据旋转的性质,代入解析式,判断是否存在. 【解析】 (1)方法一:由图象可知:抛物线经过原点, 设抛物线解析式为y=ax2+bx(a≠0). 把A(1,1),B(3,1)代入上式得:(1分) , 解得.(3分) ∴所求抛物线解析式为y=-x2+x.(4分) 方法二:∵A(1,1),B(3,1), ∴抛物线的对称轴是直线x=2. 设抛物线解析式为y=a(x-2)2+h(a≠0)(1分) 把O(0,0),A(1,1)代入 得, 解得,(3分) ∴所求抛物线解析式为y=-(x-2)2+.(4分) (2)分三种情况:S=t2,BM=BN=1-(t-3)=4-t ①当0<t≤2,重叠部分的面积是S△OPQ,过点A作AF⊥x轴于点F, ∵A(1,1), ∴在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°, ∴PQ=OQ=tcos 45°=t.S=t2,(6分) ②当2<t≤3,设PQ交AB于点G,作GH⊥x轴于点H,∠OPQ=∠QOP=45°, 则四边形OAGP是等腰梯形,重叠部分的面积是S梯形OAGP. ∴AG=FH=t-2, ∴S=(AG+OP)AF=(t+t-2)×1=t-1.(8分) ③当3<t<4,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S五边形OAMNC. 因为△PNC和△BMN都是等腰直角三角形, 所以重叠部分的面积是S五边形OAMNC=S梯形OABC-S△BMN. ∵B(3,1),OP=t, ∴PC=CN=t-3, ∴S=(2+3)×1-(4-t)2, S=-t2+4t-.(10分) (3)存在. 当O点在抛物线上时,将O(t,t)代入抛物线解析式,解得t=0(舍去),t=1; 当Q点在抛物线上时,Q(t,t)代入抛物线解析式得t=0(舍去),t=2. 故t=1或2.
复制答案
考点分析:
相关试题推荐
如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=manfen5.com 满分网
(1)求manfen5.com 满分网
(2)证明:直线DE是半圆O的切线.

manfen5.com 满分网 查看答案
某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x件,买50件奖品的总钱数是w元.
 一等奖二等奖三等奖
单元(元)12105
(1)求w与x的函数关系式及自变量x的取值范围;
(2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?
查看答案
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

manfen5.com 满分网 查看答案
已知二次函数y1=x2-2x-1的图象和反比例函数manfen5.com 满分网的图象都经过点(1,a).
(1)求a的值;
(2)试在下图所示的直角坐标系中,画出该二次函数及反比例函数的图象,并利用图象比较y1与y2的大小.

manfen5.com 满分网 查看答案
某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
manfen5.com 满分网
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是manfen5.com 满分网m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.