满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交...

如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点
(1)写出点C的坐标;
(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;
(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.

manfen5.com 满分网
(1)由直线y=-x+3可求出C点坐标; (2)由B,C两点坐标便可求出抛物线方程,从而求出抛物线的对称轴和A点坐标; (3)作出辅助线OE,由三角形的两个角相等,证明△AEC∽△AFP,根据两边成比例,便可求出PF的长度,从而求出P点坐标. 【解析】 (1)y=-x+3与y轴交于点C,故C(0,3). (2)∵抛物线y=x2+bx+c过点B,C, ∴, 解得, ∴抛物线的解析式为y=x2-4x+3=(x-1)×(x-3), ∴对称轴为x=2, 点A(1,0). (3)由y=x2-4x+3, 可得D(2,-1),A(1,0), ∴OB=3,OC=3,OA=1,AB=2, 可得△OBC是等腰直角三角形, ∴∠OBC=45°,.如图,设抛物线对称轴与x轴交于点F, ∴AF=AB=1. 过点A作AE⊥BC于点E. ∴∠AEB=90度. 可得,. 在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF, ∴△AEC∽△AFP. ∴, 解得PF=2. 或者直接证明△ABC∽△ADP得出PD=3, 再得PF=2. ∵点P在抛物线的对称轴上, ∴点P的坐标为(2,2)或(2,-2).
复制答案
考点分析:
相关试题推荐
计算:(1-π)-manfen5.com 满分网•sin60°+manfen5.com 满分网
查看答案
如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=   
manfen5.com 满分网 查看答案
对任意两个实数a,b,用max(a,b)表示其中较大的数,如max(2,-4)=2,则方程manfen5.com 满分网的解是    查看答案
在△ABC中,AB边上的中线CD=3,AB=6,BC+AC=8,则△ABC的面积为    查看答案
二次函数y=x2+ax+b中,若a-b=0,则它的图象必经过点    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.