满分5 > 初中数学试题 >

如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q...

manfen5.com 满分网如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:manfen5.com 满分网
(3)若∠ABP=15°,△ABC的面积为4manfen5.com 满分网,求PC的长.
(1)由圆周角定理知,∠BAC=∠BPC=∠APC=∠BPC=60°,即可证明△ABC是等边三角形; (2)过B作BD∥PA交PC于D,证得△AQP∽△BQD,,再证PB=BD即可; (3)通过作辅助线,构造等腰直角三角形求解. (1)【解析】 △ABC是等边三角形. 证明:∵∠ABC=∠APC=60°,∠BAC=∠BPC=60°, ∴∠ACB=180°-∠ABC-∠BAC=60°, ∴△ABC是等边三角形; (2)证明:如图,过B作BD∥PA交PC于D,则∠BDP=∠APC=60°, 又∵∠AQP=∠BQD, ∴△AQP∽△BQD, ∴, ∵∠BPD=∠BDP=60°, ∴PB=BD, ∴; (3)【解析】 设正△ABC的高为h,则h=BC•sin60°. ∵BC•h=4, 即BC•BC•sin60°=4, 解得BC=4, 连接OB,OC,OP,作OE⊥BC于E, 由△ABC是正三角形知∠BOC=120°,从而得∠OCE=30°, ∴, 由∠ABP=15°得∠PBC=∠ABC+∠ABP=75°, 于是∠POC=2∠PBC=150°, ∴∠PCO=(180°-150°)÷2=15°, 如图,作等腰直角△RMN,在直角边RM上取点G,使∠GNM=15°,则∠RNG=30°, 作GH⊥RN,垂足为H. 设GH=1,则cos∠GNM=cos15°=. 在Rt△GHN中, NH=GN•cos30°,GH=GN•sin30°, ∴RH=GH,MN=RN•sin45°, ∴cos15°=. 在图中,作OF⊥PC于F, ∴PC=2CF=2OC•cos15°=.
复制答案
考点分析:
相关试题推荐
已知抛物线y=ax2-x+c经过点Q(-2,manfen5.com 满分网),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、manfen5.com 满分网B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.
查看答案
李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.
(1)求一年前李大爷共买了多少只种兔?
(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.
查看答案
已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
查看答案
新民场镇地处城郊,镇政府为进一步改善场镇人居环境,准备在街道两边植种行道树,行道树的树种选择取决于居民的喜爱情况.为此,新民初中社会调查小组在场镇随机调查了部分居民,并将结果绘制成如下扇形统计图,其中∠AOB=126度.
请根据扇形统计图,完成下列问题:
(1)本次调查了多少名居民?其中喜爱柳树的居民有多少人?
(2)请将扇形统计图改成条形统计图(在图中完成);
(3)请根据此项调查,对新民场镇植种行道树的树种提出一条建议.
manfen5.com 满分网
查看答案
(1)计算:(-1)2009+3(tan 60°)-1-|1-manfen5.com 满分网|+(3.14-π)
(2)先化简,再选择一个合适的x值代入求值:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.