满分5 > 初中数学试题 >

如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上...

如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网
(1)根据折叠的性质可知:AB=AG=OG=,而OA=BC=m,那么在直角三角形OGA中即可用勾股定理求出m的值. (2)由于△OGA是个等腰直角三角形,已知了OA的长,因此不难求出G点的坐标,根据O,A,G三点的坐标即可用待定系数法求出抛物线的解析式. (3)本题要分情况进行讨论: ①当OP=PG,那么P点为OG的垂直平分线与抛物线对称轴的交点.因此P与H重合,P点坐标为(1,0) ②当OP=OG,那么△OPG为等腰直角三角形因此GH=PH=1,P点坐标为(1,-1). ③当GP=OG时,GP=,因此P点的坐标为(1,1+),(1,1-).(在G点上下各有一点) 【解析】 (1)解法一:∵B(m,), 由题意可知AG=AB=,OG=OC=,OA=m(2分) ∵∠OGA=90°, ∴OG2+AG2=OA2 ∴2+2=m2. 又∵m>0, ∴m=2. 解法二:∵B(m,), 由题意可知AG=AB=,OG=OC=,OA=m ∵∠OGA=90°, ∴∠GOA=∠GAO=45° ∴m=OA==2. (2)解法一:过G作直线GH⊥x轴于H, 则OH=1,HG=1,故G(1,1). 又由(1)知A(2,0), 设过O,G,A三点的抛物线解析式为y=ax2+bx+c ∵抛物线过原点, ∴c=0. 又∵抛物线过G,A两点, ∴, 解得, ∴所求抛物线为y=-x2+2x, 它的对称轴为x=1. 解法二:过G作直线GH⊥x轴于H, 则OH=1,HG=1,故G(1,1). 又由(1)知A(2,0), ∴点A,O关于直线l对称, ∴点G为抛物线的顶点. 于是可设过O,G,A三点的抛物线解析式为y=a(x-1)2+1, ∵抛物线过点O(0,0), ∴0=a(0-1)2+1, 解得a=-1, ∴所求抛物线为y=(-1)(x-1)2+1=-x2+2x 它的对称轴为x=1. (3)答:存在 满足条件的点P有(1,0),(1,-1),(1,1-),(1,1+).
复制答案
考点分析:
相关试题推荐
“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:
物资种类食品药品生活用品
每辆汽车运载量(吨)654
每吨所需运费(元/吨)120160100
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
查看答案
如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.
求证:四边形AECD是等腰梯形.

manfen5.com 满分网 查看答案
先化简(manfen5.com 满分网)•manfen5.com 满分网,再选一个你喜欢且能使分式有意义的实数求出分式的值.
查看答案
解不等式组manfen5.com 满分网
查看答案
已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.