满分5 > 初中数学试题 >

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD...

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
manfen5.com 满分网
(1)根据O、E的坐标即可确定抛物线的解析式,进而求出其顶点坐标,即可得出所求的结论; (2)①当t=时,OA=AP=,由此可求出P点的坐标,将其代入抛物线的解析式中进行验证即可; ②此题要分成两种情况讨论: 一、PN=0时,即t=0或t=3时,以P、N、C、D为顶点的多边形是△PCD,以CD为底AD长为高即可求出其面积; 二、PN≠0时,即0<t<3时,以P、N、C、D为顶点的多边形是梯形PNCD,根据抛物线的解析式可表示出N点的纵坐标,从而得出PN的长,根据梯形的面积公式即可求出此时S、t的函数关系式,令S=5,可得到关于t的方程,若方程有解,根据求得的t值即可确定N点的坐标,若方程无解,则说明以P、N、C、D为顶点的多边形的面积不可能为5. 【解析】 (1)因抛物线y=-x2+bx+c经过坐标原点O(0,0)和点E(4,0), 故可得c=0,b=4, 所以抛物线的解析式为y=-x2+4x(1分), 由y=-x2+4x,y=-(x-2)2+4, 得当x=2时,该抛物线的最大值是4;(2分) (2)①点P不在直线ME上; 已知M点的坐标为(2,4),E点的坐标为(4,0), 设直线ME的关系式为y=kx+a; 于是得,, 解得:, 所以直线ME的关系式为y=-2x+8;(3分) 由已知条件易得,当t=时,OA=AP=,P(,)(4分) ∵P点的坐标不满足直线ME的关系式y=-2x+8; ∴当t=时,点P不在直线ME上;(5分) ②以P、N、C、D为顶点的多边形面积可能为5 ∵点A在x轴的非负半轴上,且N在抛物线上, ∴OA=AP=t; ∴点P、N的坐标分别为(t,t)、(t,-t2+4t)(6分) ∴AN=-t2+4t(0≤t≤3), ∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0, ∴PN=-t2+3t(7分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, ∴S=DC•AD=×3×2=3; (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵PN∥CD,AD⊥CD, ∴S=(CD+PN)•AD=[3+(-t2+3t)]×2=-t2+3t+3(8分) 当-t2+3t+3=5时,解得t=1、2(9分) 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5, 当t=1时,此时N点的坐标(1,3)(10分) 当t=2时,此时N点的坐标(2,4).(11分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合,(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)
复制答案
考点分析:
相关试题推荐
已知:关于x的一元二次方程x2-2(m+1)x+2m+1=0
(1)求证:方程有两个实数根;
(2)设m<0,且方程的两个实数根分别为x1,x2(其中x1<x2),若y是关于m的函数,且y=manfen5.com 满分网,求这个函数的解析式;
(3)在(2)的条件下,利用函数图象求关于m的方程y+m-2=0的解.
查看答案
阅读下列材料:根据所给的图形解答下列问题:
(1)如图1,△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,把△ABD绕点A旋转,并拼接成一个正方形,请你在图1中完成这个作图;
(2)如图2,△ABC中,AB=AC,∠BAC=90°,请你设计一种与(1)不同方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;
(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正方形.manfen5.com 满分网
查看答案
“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图
(1)该校参加机器人、建模比赛的人数分别是______人和______人;
(2)该校参加科技比赛的总人数是______人,电子百拼所在扇形的圆心角的度数是______°,并把条形统计图补充完整;
(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
manfen5.com 满分网
查看答案
如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,BE=1,求cosA的值.

manfen5.com 满分网 查看答案
已知如图:直角梯形ABCD中,AD∥BC,∠BAD=90°,BC=CD=26,manfen5.com 满分网,求:梯形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.