已知:抛物线经过点A(-1,0),B(0,3),C(2,3)三点,顶点为D,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)求三角形BDE的面积;
(3)作∠BDE的平分线交线段BE于点F,求BF:FE的值.
考点分析:
相关试题推荐
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于E,DA平分∠BDE
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长;
(3)若3DE=DC,4DE=BC,AD=5,求BD的长.
查看答案
某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50 000元,且每售出一套软件,软件公司还需支付安装调试费用200元.
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式;
(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?
查看答案
如图,梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)若AB=DC=2,BC=4,求梯形的面积;
(2)若∠A=120°,BD=BC=4
,求梯形的面积.
查看答案
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成的频数分布表和频数分布直方图,解答下列问题:
分组 | 频数 | 频率 |
50.5-60.5 | 4 | 0.08 |
60.5-70.5 | 8 | 0.16 |
70.5-80.5 | 10 | 0.20 |
80.5-90.5 | 16 | 0.32 |
90.5-100.5 | | |
合计 | | |
(1)填充频数分布表中的空格;
(2)补全频数分布直方图;
(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?若成绩在90分以上(不含90分)为优秀,则请你估计一下该校成绩优秀学生约为多少人?
查看答案